Cellulose and Chitosan Composite Membranes for Protein and Salt Filtration
DOI:
https://doi.org/10.11113/amst.v4i1.42Abstract
Cellulose membrane (SE) was prepared by culturing Acetobacter xylinum in a media with sucrose as a carbon source and was used as a supporting membrane in this study. Pore size of the supporting membrane was studied by means of molecular weight cut off (MWCO) and SEM micrographs. For making cellulose/chitosan composite membrane SE/CH, chitosan solution was used as a coating polymer and applied by a casting method.This resulted in a smaller hydraulic permeability coefficient (Lp) from 6.7 × 10–11 m3 N–1 s–1 in membrane SE to 1.94 × 10–12 m3 N–1 s–1 in the composite membrane SE/CH. Using PEG of several molecular weights as feed solution, the MWCO of the SE membrane was 200 kDa while that of the SE/CH membrane was 6 kDa. The former rejected 1 g L–1 BSA by 80%. With pH between 3 and 8, the composite membrane SE/CH rejected NaCl and NaHCO3 by 50%, independent of the pH level. However, when using a divalent salt solution of MgSO4 the rejection was increased up to 85%, with an optimum at pH 6–7 and a permeate flux of 5.0 L m–2h–1 at pressures of 0.5 MPa.Downloads
Published
2017-11-20
How to Cite
Rakbamrung, P., Wanichapichart, P., & Tirawanichakul, Y. (2017). Cellulose and Chitosan Composite Membranes for Protein and Salt Filtration. Journal of Applied Membrane Science & Technology, 4(1). https://doi.org/10.11113/amst.v4i1.42
Issue
Section
Articles
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.