Effect of Polymer Concentration on the Morphology and Mechanical Properties of Asymmetric Polysulfone (PSf) Membrane

Authors

  • N. M. Ismail Faculty of Engineering, Universiti Malaysia Sabah, 88400 UMS Kota Kinabalu, Sabah, Malaysia
  • N. R. Jakariah Faculty of Engineering, Universiti Malaysia Sabah, 88400 UMS Kota Kinabalu, Sabah, Malaysia
  • N. Bolong Faculty of Engineering, Universiti Malaysia Sabah, 88400 UMS Kota Kinabalu, Sabah, Malaysia
  • S. M. Anissuzaman Faculty of Engineering, Universiti Malaysia Sabah, 88400 UMS Kota Kinabalu, Sabah, Malaysia
  • N. A. H. M. Nordin Department of Chemical Engineering, Universiti Teknologi PETRONAS (UTP), 32610 Bandar Seri Iskandar, Perak, Malaysia
  • A. R. Razali Manufacturing Focus Group, Faculty of Mechanical Engineering, Universiti Malaysia Pahang, 26600 Pekan Pahang, Malaysia

DOI:

https://doi.org/10.11113/amst.v21i1.107

Abstract

Polymer concentration had been identified as one of the important parameters tailoring the membrane properties. In this work, the effects of polymer concentration on the morphological and mechanical properties of membrane were investigated at three different polymer concentrations, i.e., 20, 25 and 30 wt%. The viscosity of dope solutions were determined to estimate the optimum polymer concentration.  The morphological properties of the fabricated membrane were determined using SEM whereas the mechanical properties of the membrane were investigated using tensile tester. Results show that an increase in the polymer concentration could lead to the improvement of the morphological and mechanical properties of the membrane. The tensile strength of the membrane determined for PSf-20, PSf-25 and PSf-30 are 5.73, 6.59 and 7.03 MPa, respectively whereas the elongation at break measured for the membranes are 46.99%, 69.18% and 36.27%, respectively. As shown in this work, the polymer concentration played a significant role to alter on membrane morphology and mechanical strength. 

References

B. Shimekit and H. Mukhtar. 2012. Natural Gas Purification Technologies–Major CO2 Separation and Future Directions. Universiti of Teknologi Petronas. 235-270.

S. Mokhatab and W. Poe. 2012. Handbook of Natural Gas Transmission and Processing. Second Edition. Elsevier B.V. 253-290.

D. F. Sanders, Z. P. Smith, R. Guo, L. M. Robeson, J. E. McGrath, D. R. Paul and B. D. Freeman. 2013. Energy Efficient Polymeric Gas Separation Membranes for a Sustainable Future: A Review. J. Polym. 54: 4729-4761.

R. Abedini and A. Nezhadmoghadam. 2010. Application of Membrane in Gas Separation Processes: Its Suitability and Mechanisms. J. Pet. Coal. 52: 69-80.

N. M. Ismail, A. F. Ismail, A. Mustafa, T. Matsuura, T. Soga, K. Nagata, T. Asaka. 2015. Qualitative and Quantitative Analysis of Intercalated and Exfoliated Silicate Layers in Asymmetric Polyethersulfone/Cloisite15a Ã’ Mixed Matrix Membrane for CO2/CH4 Separation. Chem. Eng. J. 268: 371-383.

S. Hamzah, N. Ali, M. M. Ariffin, A. Ali and A. W. Mohammad. 2014. High Performance of Polysulfone Ultrafiltration Membrane: Effect of Polymer Concentration. J. Eng. Appl. Sci. 9: 2543-2550.

H. Julian and I. G. Wenten. 2012. Polysulfone Membranes for CO2/CH4 Separation: State of the Art. J. Eng. 2: 484-495.

A. K. Hołda, B. Aernouts, W. Saeys and I. F. J. Vankelecom. 2013. Study of Polymer Concentration and Evaporation Time as Phase Inversion Parameters for Polysulfone-based SRNF Membranes. J. Memb. Sci. 442: 196-205.

A. F. Ismail and L. P. Yean. 2003. Review on the Development of Defect Free and Ultrathin Skinned Asymmetric Membranes for Gas Separation Through Manipulation of Phase Inversion and Rheological Factors. J. Appl. Polym. Sci. 88: 442-451.

M. T. Ravanchia, T. Kaghazchia and A. Kargarib. 2009. Application of Membrane Separation Processes in Petrochemical Industry: A Review. Desalination. 235: 199-244.

N. M. Ismail, A. F. Ismail and A. Mustafa. 2015. Sustainability in Petrochemical Industry: Mixed Matrix Membranes from Polyethersulfone/cloisite15A® for the Removal of Carbon Dioxide. Procedia CIRP. 26: 461-466.

N. Peng, T. S. Chung and K. Y. Wang. 2014. Macrovoid Evolution and Critical Factors to Form Macrovoid-free Hollow Fiber Membranes. J. Memb. Sci. 318: 363-372.

T. S. Chung, S. K. Teoh, and X. Hu. 1997. Formation of Ultrathin high-performancepolyethersulfone Hollow-fiber Membranes. J. Memb. Sci. 133: 161-175.

M. I. Mustaffar, A. F. Ismail and R. M. Illias. 2004. Study on the Effect of Polymer Concentration on Hollow Fiber Ultrafiltration Membrane Performance and Morphology. Reg. Conf. Eng. Educ. RCEE 2005. 1-12.

B. Zhou and Ph.D. Massachusetts Institute of Technology. 2006. Simulations of Polymeric Membrane Formation in 2D and 3D.

H. Sofiah, A. Nora’aini and M. A. Marinah. 2010. The Influence of Polymer Concentration on Performance and Morphology of Asymmetric Ultrafiltration Membrane for Lysozyme Separation. J. Appl. Sci. 10: 3325-3330.

M. Z. Yunos, Z. Harun, H. Basri, A. F. Ismail. 2012. Effects of Water as Non-solvent Additive on Performance of Polysulfone Ultrafiltration Membrane. Adv. Mater. Res. 488-489: 46-50.

X. Wang, Z. Li, M. Zhang, T. Fan and B. Cheng. 2017. Preparation of a Polyphenylene Sulfide Membrane from a Ternary Polymer/Solvent/Non-Solvent System by Thermally Induced Phase Separation. R. Soc. Chem. 7: 10503-10516.

P. Amirabedi, R. Yegani and M. K. R. Aghjeh. 2013. Experimental Design Applied toFabrication of PSf Membranes via NIPS Method. J. Text. Polym. 1: 24-30.

Downloads

Published

2017-12-07

How to Cite

Ismail, N. M., Jakariah, N. R., Bolong, N., Anissuzaman, S. M., Nordin, N. A. H. M., & Razali, A. R. (2017). Effect of Polymer Concentration on the Morphology and Mechanical Properties of Asymmetric Polysulfone (PSf) Membrane. Journal of Applied Membrane Science & Technology, 21(1). https://doi.org/10.11113/amst.v21i1.107

Issue

Section

Articles