An Overview of Wastewater Treatment and Reuse in The Gulf Cooperation Council Countries


  • Haleema Saleem UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
  • Maryam Mohammad Khan UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
  • Moza Alkaabi UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
  • Noura Boudjema UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
  • Fatema Alshowaikh UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha, Qatar
  • Syed Javaid Zaidi UNESCO Chair in Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha, Qatar



Wastewater reuse, wastewater treatment, GCC Countries, Membrane Technologies, Qatar


The human population generates a substantial amount of waste, and if it is discarded without any treatment it can lead to environmental degradation. This is commonly executed by discharging substantial amount of untreated wastewater in the waterways. Wastewater can be generated from numerous locations but for this review the principal areas concerned are municipalities and industries. The focus of the current study relies on performing a thorough review on expressing the benefits of treating wastewater, assessing Gulf Cooperation Council (GCC) reuse regulations associated with wastewater reuse, identifying different wastewater treatment technologies, and evaluating previous research implemented on this field across the GCC region. Various case studies about treatment technologies and reuse regulations are analyzed in this review for each country within the GCC. The findings show that treating wastewater holds many benefits such as reducing environmental pollution and can aid in helping nations with limited access to fresh water to meet their demand. The technologies for treating wastewater are discussed, such as: conventional filtration, chemical, biological treatment, and different membrane technologies. The review conveys that although treating water has many benefits, there are still many challenges associated with the cost, public perception, and management policies that need to be resolved. To improve wastewater treatment policies effective management can show greater potential for mitigating the freshwater shortage in the GCC countries. Also, since each GCC country has different policies regarding wastewater management, more research should be conducted in the future to adapt as the GCC territory is competing to produce new wastewater treatment plants to accommodate their growing demand for fresh water.


H. Hettiarachchi. (2018). Safe use of wastewater in agriculture: From concept to implementation. Springer Cham. Doi:

A. S. Qureshi. (2020). Challenges and prospects of using treated wastewater to manage water scarcity crises in the Gulf Cooperation Council (GCC) countries. Water (Switzerland), 12(7). Doi: 10.3390/w12071971.

S. Mohd Hizam, M. R. Bilad, N. A. H. Md Nordin, and N. Shamsuddin. (2021). Forward osmosis for produced water treatment: A comprehensive review. J. Penelit. dan Pengkaj. Ilmu Pendidik. e-Saintika, 5(3), 253-272. Doi: 10.36312/esaintika.v5i3.542.

T. T. H. Nguyen. (2020). Emerging organic contaminants in wastewater treatment plants. The University of Queensland. Doi: 10.14264/uql.2020.200.

S. Y. Jasim, J. Saththasivam, K. Loganathan, O. O. Ogunbiyi, and S. Sarp. (2016). Reuse of treated sewage effluent (TSE) in Qatar. J. Water Process Eng., 11, 174-182. Doi: 10.1016/j.jwpe.2016.05.003.

Duncan Mara. (2013). Preliminary Treatment. In Domestic Wastewater Treatment in Developing Countries,. Routledge. 95-101. Doi: 10.4324/9781849771023-14.

E. Iloms, O. O. Ololade, H. J. O. Ogola, and R. Selvarajan. (2020). Investigating Industrial effluent impact on municipal wastewater treatment plant in Vaal, South Africa. Int. J. Environ. Res. Public Health, 17(3), 1096. Doi: 10.3390/ijerph17031096.

M. Spychała, T. Nawrot, and R. Matz. (2021). A Preliminary study on the use of xylit as filter material for domestic wastewater treatment. Appl. Sci., 11(11), 5281. Doi: 10.3390/app11115281.

M. Lares, M. C. Ncibi, M. Sillanpää, and M. Sillanpää. (2018), Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Res., 133, 236-246. Doi: 10.1016/j.watres.2018.01.049.

N. A. Jasim. (2020). The design for wastewater treatment plant (WWTP) with GPS X modelling. Cogent Eng., 7(1), 1723782. Doi: 10.1080/23311916.2020.1723782.

Environmental Science. (2003). Wastewater Technology Fact Sheet Screening and Grit Removal.

Z. Kong et al. (2021). Sludge yield and degradation of suspended solids by a large pilot-scale anaerobic membrane bioreactor for the treatment of real municipal wastewater at 25 °C. Sci. Total Environ., 759, 143526. Doi: 10.1016/j.scitotenv.2020.143526.

W. Sun. (2021). Application and evaluation of removing nutrients in wastewater via AAO process in Tianjin, China. IOP Conf. Ser. Earth Environ. Sci., 714(2), 022011. Doi: 10.1088/1755-1315/714/2/022011.

S. Rahimi, O. Modin, and I. Mijakovic. (2020). Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol. Adv., 43, 107570. Doi: 10.1016/j.biotechadv.2020.107570.

A. Cydzik-Kwiatkowska and D. Nosek. (2020). Biological release of phosphorus is more efficient from activated than from aerobic granular sludge. Sci. Rep., 10(1), 11076. Doi: 10.1038/s41598-020-67896-5.

S. Yang and G. Yao. (2018). Simultaneous removal of concentrated organics, nitrogen and phosphorus nutrients by an oxygen-limited membrane bioreactor. PLoS One, 13(8), e0202179. Doi: 10.1371/journal.pone.0202179.

W. A. Shewa and M. Dagnew. (2020). Revisiting chemically enhanced primary treatment of wastewater: A review. Sustainability, 12(15), 5928. Doi: 10.3390/su12155928.

United Nation. (2018). The United Nations World Water Development Report 2018 Nature-based Solutions for Water World Water Assessment Programme United Nations Educational, Scientific and Cultural Organization Sustainable Development Goals water and sanitation.

I. Alam and A. Malik. (2020). Wastewater Disposal Techniques. In The Palgrave Handbook of Corporate Social Responsibility. Cham: Springer International Publishing. 1-34. Doi: 10.1007/978-3-030-22438-7_90-1.

J. Johnston, T. LaPara, and S. Behrens. (2019). Composition and dynamics of the activated sludge microbiome during seasonal nitrification failure. Sci. Rep., 9(1), 4565. Doi: 10.1038/s41598-019-40872-4.

A. Szaja and J. Szulżyk-Cieplak. (2020). Influence of bioaugmentation strategy of activated sludge on the co-treatment of reject water and municipal wastewater at a decreasing temperature. J. Ecol. Eng., 21(5), 97-106. Doi: 10.12911/22998993/122239.

P. Sanga, X. Kong, and K. Zhang. (2019). Effect of deionization on activated sludge characteristics: A case study of activated sludge culture with tap water and distilled water. J. Geosci. Environ. Prot., 07(12), 116-125. Doi: 10.4236/gep.2019.712008.

S. L. E. Kan, M. R. Fahmi, K. J. Shum, A. H. Ibrahim, C. Z. A. Abidin, and B. S. Kusuma. (2020). Improvement of oxygen transfer efficiency in the activated sludge process. IOP Conf. Ser. Earth Environ. Sci., 476(1), 012098. Doi: 10.1088/1755-1315/476/1/012098.

S. Waqas et al. (2021). An energy-efficient membrane rotating biological contactor for wastewater treatment. J. Clean. Prod., 282, 124544. Doi: 10.1016/j.jclepro.2020.124544.

S. Waqas et al. (2021). Membrane filtration as post-treatment of rotating biological contactor for wastewater treatment. Sustainability, 13(13), 7287. Doi: 10.3390/su13137287.

L. Berg, M. C. M. Loosdrecht, and M. K. Kreuk. (2021). How to measure diffusion coefficients in biofilms: A critical analysis. Biotechnol. Bioeng., 118(3), 1273-1285. Doi: 10.1002/bit.27650.

A. M. Abdelkader. (2021). Comparative Study between membrane bioreactor MBR and rotating biological contactors RBC for greywater treatment. Int. J. Environ. Sci. Dev., 12(4), 107-111. Doi: 10.18178/ijesd.2021.12.4.1326.

Amjad G. Mizyed. (2021). Review on Application of Rotating Biological Contactor in Removal of Various Pollutants from Effluent. Technium BioChemMed, 2(1).

T. Azuma and T. Hayashi. (2021). On-site chlorination responsible for effective disinfection of wastewater from hospital. Sci. Total Environ., 776, 145951. Doi: 10.1016/j.scitotenv.2021.145951.

T. Y. Cath, A. E. Childress, and M. Elimelech. (2006). Forward osmosis: Principles, applications, and recent developments. Journal of Membrane Science, 281(1-2), 70-87. Doi: 10.1016/j.memsci.2006.05.048.

B. Wichitsathian, J. Yimratanabovorn, and W. Wonglertarak. (2020). Enhancement of performance and biodegradability kinetics of aerobic-anaerobic sludge digestion. E3S Web Conf., 167, 01010. Doi: 10.1051/e3sconf/202016701010.

P. Xia et al. (2020). Complex odor control based on ozonation/GAC advanced treatment: optimization and application in one full-scale water treatment plant. Environ. Sci. Eur., 32(1), 50. Doi: 10.1186/s12302-020-00313-w.

Z. Aghalari, H.-U. Dahms, M. Sillanpää, J. E. Sosa-Hernandez, and R. Parra-Saldívar. (2020). Effectiveness of wastewater treatment systems in removing microbial agents: A systematic review. Global. Health, 16(1), 13. Doi: 10.1186/s12992-020-0546-y.

J. N. Edokpayi, J. O. Odiyo, O. E. Popoola, and T. A. M. Msagati. (2021). Evaluation of contaminants removal by waste stabilization ponds: A case study of Siloam WSPs in Vhembe District, South Africa. Heliyon, 7(2), e06207. Doi: 10.1016/j.heliyon.2021.e06207.

N. Ungureanu, V. Vlăduț, and G. Voicu. (2020). Water scarcity and wastewater reuse in crop irrigation. Sustainability, 12(21), 9055. Doi: 10.3390/su12219055.

A. Shanableh et al. (2018). Greywater Reuse Policies and Practice in the City of Sharjah. United Arab Emirates.

Y. Almulla et al. (2020). A GIS-based approach to inform agriculture-water-energy nexus planning in the North Western sahara aquifer system (NWSAS). Sustainability, 12(17), 7043. Doi: 10.3390/su12177043.

C. Ramirez, Y. Almulla, and F. Fuso Nerini. (2021). Reusing wastewater for agricultural irrigation: A water-energy-food Nexus assessment in the North Western Sahara Aquifer System. Environ. Res. Lett., 16(4). Doi: 10.1088/1748-9326/abe780.

M. Bob. (2017). Effect of operational changes in wastewater treatment plants on biochemical oxygen demand and total suspended solid removal. 407-417. Doi: 10.1007/978-3-319-51856-5_23.

B. Moossa, P. Trivedi, H. Saleem, and S. J. Zaidi. (2022). Desalination in the GCC countries- A review. J. Clean. Prod., 357, 131717. Doi: 10.1016/j.jclepro.2022.131717.

E. Aleisa and W. Al-Zubari. (2017). Wastewater reuse in the countries of the Gulf Cooperation Council (GCC): The lost opportunity. Environ. Monit. Assess., 189(11), 553. Doi: 10.1007/s10661-017-6269-8.

S. Parimalarenganayaki. (2021). Managed aquifer recharge in the gulf countries: A Review and selection criteria. Arab. J. Sci. Eng., 46(1), 1-15. Doi: 10.1007/s13369-020-05060-x.

N. D. Mu’azu, I. R. Abubakar, and N. I. Blaisi. (2020). Public acceptability of treated wastewater reuse in Saudi Arabia: Implications for water management policy. Sci. Total Environ., 721, 137659. Doi: 10.1016/j.scitotenv.2020.137659.

M. Dawoud. (2017). The role of TSE reuse in water sustainability in GCC countries.

C. Tortajada. (2020). Contributions of recycled wastewater to clean water and sanitation Sustainable Development Goals. npj Clean Water, 3(1), 22. Doi: 10.1038/s41545-020-0069-3.

F.-Z. Lahlou, H. R. Mackey, and T. Al-Ansari. (2021). Wastewater reuse for livestock feed irrigation as a sustainable practice: A socio-environmental-economic review. J. Clean. Prod., 294, 126331. Doi: 10.1016/j.jclepro.2021.126331.

C. Ramirez, Y. Almulla, and F. Fuso Nerini, “Reusing wastewater for agricultural irrigation: a water-energy-food Nexus assessment in the North Western Sahara Aquifer System,” Environ. Res. Lett., vol. 16, no. 4, p. 044052, Apr. 2021, doi: 10.1088/1748-9326/abe780.

W. K. Mok, Y. X. Tan, and W. N. Chen. (2020). Technology innovations for food security in Singapore: A case study of future food systems for an increasingly natural resource-scarce world. Trends Food Sci. Technol., 102, 155-168. Doi: 10.1016/j.tifs.2020.06.013.

M. Al-Saidi. (2021). From Acceptance snapshots to the social acceptability process: structuring knowledge on attitudes towards water reuse. Front. Environ. Sci., 9. Doi: 10.3389/fenvs.2021.633841.

M. S. Alshammari. (2020). Assessment of sewage water treatment using grinded bauxite rock as a robust and low-cost adsorption. J. Chem., 2020, 7201038. Doi: 10.1155/2020/7201038.

A. Shanableh et al. (2021). Assessment and reform of greywater reuse policies and practice: A case study from Sharjah, United Arab Emirates. Water Policy, 23(2), 376-396. Doi: 10.2166/wp.2021.205.

C. Kean et al. (2021). Policy study of desalination in Sharjah, UAE. Doctoral dissertation. American University of Sharjah.

A. Müller, H. Österlund, J. Marsalek, and M. Viklander. (2020). The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ., 709, 136125. Doi: 10.1016/j.scitotenv.2019.136125.

M. Ayad, J. Li, B. Holt, and C. Lee. (2020). Analysis and classification of stormwater and wastewater runoff from the Tijuana River using remote sensing imagery. Front. Environ. Sci., 8. Doi: 10.3389/fenvs.2020.599030.

L. M. Werbowski et al. (2021). Urban stormwater runoff: A major pathway for anthropogenic particles, black rubbery fragments, and other types of microplastics to urban receiving waters. ACS ES&T Water, 1(6), 1420-1428. Doi: 10.1021/acsestwater.1c00017.

K. Mulder. (2019). Future Options for sewage and drainage systems three scenarios for transitions and continuity. Sustainability, 11(5), 1383. Doi: 10.3390/su11051383.

F. J. W. Herbig. (2019). Talking dirty-effluent and sewage irreverence in South Africa: A conservation crime perspective. Cogent Soc. Sci., 5(1), 1701359. Doi: 10.1080/23311886.2019.1701359.

D. Ghernaout and N. Elboughdiri. (2019). Upgrading wastewater treatment plant to obtain drinking water. OALib, 06(12), 1-14. Doi: 10.4236/oalib.1105959.

F. A. Kibuye et al. (2019). Occurrence, concentrations, and risks of pharmaceutical compounds in private wells in Central Pennsylvania. J. Environ. Qual., 48(4), 1057-1066. Doi: 10.2134/jeq2018.08.0301.

C. Ferreiro et al. (2020). Contaminants of emerging concern removal in an effluent of wastewater treatment plant under biological and continuous mode ultrafiltration treatment. Sustainability, 12(2), 725. Doi: 10.3390/su12020725.

A. I. Stefanakis. (2020). Constructed wetlands for sustainable wastewater treatment in hot and arid climates: Opportunities, challenges and case studies in the Middle East. Water (Switzerland), 12(6). Doi: 10.3390/W12061665.

H. A. Abdel-Rahman and I. M. Abdel-Magid. (1993). Water conservation in Oman. Water Int., 18(2), 95-102. Doi: 10.1080/02508069308686155.

W. Abderrahman. (2020). Successful implementation of closed water cycle approach for industrial wastewater treatment and reuse in saudi arabia: A case study. Desalination and Water Treatment, 176, 24-25. Doi: 10.5004/dwt.2020.25490.

Fanack. (2014). Water of the Middle East and North Africa, 2017-2021.

Regulation and Supervision Bureau (RSB). (2010). Recycled water and biosolids regulations. June, 47-50.

O. Abu-Rizaiza. (1999). Modification of the standards of wastewater reuse in Saudi Arabia. Water Res., 33(11), 2601-2608. Doi: 10.1016/S0043-1354(98)00477-1.

R. M. Abu Shmeis. (2018). Water chemistry and microbiology. 1-56. Doi: 10.1016/bs.coac.2018.02.001.

S. A. Ministry. (2001). KSA Ministry of Water and Electricity: Executive Regulations of Law of Treated Sewage Water and its Reuse Thereof. 1-52.

T. S. Arturi, C. J. Seijas, and G. L. Bianchi. (2019). A comparative study on the treatment of gelatin production plant wastewater using electrocoagulation and chemical coagulation. Heliyon, 5(5), e01738. Doi: 10.1016/j.heliyon.2019.e01738.

C. O. C. Nascimento, M. T. Veit, S. M. Palácio, G. C. Gonçalves, and M. R. Fagundes-Klen. (2019). Combined application of coagulation/flocculation/sedimentation and membrane separation for the treatment of laundry wastewater. Int. J. Chem. Eng., 2019, 1-13. Doi: 10.1155/2019/8324710.

D. Ghernaout. (2020). Electrocoagulation as a pioneering separation technology—electric field role. OALib, 07(08), 1-19. Doi: 10.4236/oalib.1106702.

S. S. Rashwan, I. Dincer, and A. Mohany. (2021). A journey of wastewater to clean hydrogen: A perspective. Int. J. Energy Res., 45(5), 6475-6482. Doi: 10.1002/er.6279.

E. Alekseev and S. Shambina. (2021). Coagulation of waste water from the point of view of physic-chemical interactions. E3S Web Conf., 263, 04011. Doi: 10.1051/e3sconf/202126304011.

K. M. Katubi, A. Amari, H. N. Harharah, M. M. Eldirderi, M. A. Tahoon, and F. Ben Rebah. (2021). Aloe vera as promising material for water treatment: a review. Processes, 9(5), 782. Doi: 10.3390/pr9050782.

J. J. Kelly, M. G. London, A. R. McCormick, M. Rojas, J. W. Scott, and T. J. Hoellein. (2021). Wastewater treatment alters microbial colonization of microplastics. PLoS One, 16(1), e0244443. Doi: 10.1371/journal.pone.0244443.

K. O. Iwuozor. (2019). Prospects and challenges of using coagulation-flocculation method in the treatment of effluents. Adv. J. Chem. A, 105-127. Doi: 10.29088/SAMI/AJCA.2019.2.105127.

P. Bhatt, A. Verma, S. Gangola, G. Bhandari, and S. Chen. (2021). Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications. Microb. Cell Fact., 20(1), 72. Doi: 10.1186/s12934-021-01556-9.

K. L. Rogers, J. A. Carreres‐Calabuig, E. Gorokhova, and N. R. Posth. (2020). Micro‐by‐micro interactions: How microorganisms influence the fate of marine microplastics. Limnol. Oceanogr. Lett., 5(1), 18-36. Doi: 10.1002/lol2.10136.

S. Mishra, Z. Lin, S. Pang, W. Zhang, P. Bhatt, and S. Chen. (2021). Recent advanced technologies for the characterization of xenobiotic-degrading microorganisms and microbial communities. Front. Bioeng. Biotechnol., 9. Doi: 10.3389/fbioe.2021.632059.

J. Wang, Y. Ji, F. Zhang, D. Wang, X. He, and C. Wang. (2019). Treatment of coking wastewater using oxic-anoxic-oxic process followed by coagulation and ozonation,” Carbon Resour. Convers., 2(2), 151-156. Doi: 10.1016/j.crcon.2019.06.001.

M. B. Ceretta, D. Nercessian, and E. A. Wolski. (2021). Current trends on role of biological treatment in integrated treatment technologies of textile wastewater. Front. Microbiol., 12. Doi: 10.3389/fmicb.2021.651025.

A. B. Mpofu, O. O. Oyekola, and P. J. Welz. (2021). Anaerobic treatment of tannery wastewater in the context of a circular bioeconomy for developing countries. J. Clean. Prod., 296, 126490. Doi: 10.1016/j.jclepro.2021.126490.

T. M. Kathawala, K. V. Gayathri, and P. Senthil Kumar. (2021). A performance comparison of anaerobic and an integrated anaerobic-aerobic biological reactor system for the effective treatment of textile wastewater. Int. J. Chem. Eng., 1-15. Doi: 10.1155/2021/8894332.

Z. He et al. (2021). Effect of on-site sludge reduction and wastewater treatment based on electrochemical-A/O combined process. Water, 13(7), 941. Doi: 10.3390/w13070941.

J. M. Bidu, B. Van der Bruggen, M. J. Rwiza, and K. N. Njau. (2021). Current status of textile wastewater management practices and effluent characteristics in Tanzania. Water Sci. Technol., 83(10), 2363-2376. Doi: 10.2166/wst.2021.133.

S. Yadav et al. (2020). Recent developments in forward osmosis membranes using carbon-based nanomaterials. Desalination, 482, 114375. Doi: 10.1016/j.desal.2020.114375.

H. Saleem and J. Zaidi. (2020) Nanoparticles in reverse osmosis membranes for desalination: A state of the art review. Desalination, 475, 114171. Doi: 10.1016/j.desal.2019.114171.

HaleemaSaleem, L. Trabzon, A. Kilic, J. Zaidi, and D. Çetin. (2020). Recent advances in nanofibrous membranes: Production and applications in water treatment and desalination. Desalination, 478, 114178. Doi: 10.1016/j.desal.2019.114178.

H. Saleem and S. J. Zaidi, “Developments in the application of nanomaterials for water treatment and their impact on the environment,” Nanomaterials, vol. 10, no. 9. MDPI AG, pp. 1–39, Sep. 01, 2020. doi: 10.3390/nano10091764.

S. J. Zaidi, F. Fadhillah, H. Saleem, A. Hawari, and A. Benamor. (2019). Organically modified nanoclay filled thin-film nanocomposite membranes for reverse osmosis application. Materials (Basel)., 12(22). Doi: 10.3390/ma12223803.

H. Saleem and S. Zaidi. (2020). Innovative nanostructured membranes for reverse osmosis water desalination. Doi: 10.29117/quarfe.2020.0023.

S. G. Prapulla and N. G. Karanth. (2014). Fermentation (industrial): Recovery of metabolites. Encyclopedia of Food Microbiology, 822-833. Doi: 10.1016/B978-0-12-384730-0.00109-9.

E. Obotey Ezugbe and S. Rathilal. (2020). Membrane technologies in wastewater treatment: A review. Membranes (Basel)., 10(5), 89. Doi: 10.3390/membranes10050089.

S. Vinardell, S. Astals, J. Mata-Alvarez, and J. Dosta. (2020). Techno-economic analysis of combining forward osmosis-reverse osmosis and anaerobic membrane bioreactor technologies for municipal wastewater treatment and water production. Bioresour. Technol., 297, 122395. Doi: 10.1016/j.biortech.2019.122395.

S. Al-Maadheed, I. Goktepe, A. B. A. Latiff, and B. Shomar. (2019). Antibiotics in hospital effluent and domestic wastewater treatment plants in Doha, Qatar. J. Water Process Eng., 28, 60-68. Doi: 10.1016/j.jwpe.2019.01.005.

A. Kamal, S. G. Al-Ghamdi, and M. Koç. (2021). Assessing the impact of water efficiency policies on Qatar’s electricity and water sectors. Energies, 14(14). Doi: 10.3390/en14144348.

P. Arribas, M. Khayet, M. C. García-Payo, and L. Gil. (2015). Novel and emerging membranes for water treatment by electric potential and concentration gradient membrane processes. Adv. Membr. Technol. Water Treat. Mater. Process. Appl., 287-325. Doi: 10.1016/B978-1-78242-121-4.00009-5.

M. Hafiz, R. Alfahel, A. H. Hawari, M. K. Hassan, and A. Altaee. (2021). A hybrid NF-FO-RO process for the supply of irrigation water from treated wastewater: simulation study. Membranes (Basel)., 11(3), 191. Doi: 10.3390/membranes11030191.

B. D. Coday and T. Y. Cath. (2014). Forward osmosis: Novel desalination of produced water and fracturing flowback. Cath Source J. (American Water Work. Assoc., 106(2), 55-66. Doi: 10.2307/jamewatworass.106.2.e55.

B. B. A. Al Mahri, H. A. Balogun, A. Yusuf, and A. Giwa. (2020). Electro-osmotic thermal process model for performance enhancement of forward osmosis integrated with membrane distillation. Sep. Purif. Technol., 238, 116494. Doi: 10.1016/j.seppur.2019.116494.

S. Kim. (2021). Membranes for Water, gas and ion separation. Membranes (Basel)., 11(5), 325, Doi: 10.3390/membranes11050325.

P. Pal, M. Sardar, M. Pal, S. Chakrabortty, and J. Nayak. (2019). Modelling forward osmosis-nanofiltration integrated process for treatment and recirculation of leather industry wastewater. Comput. Chem. Eng., 127, 99-110. Doi: 10.1016/j.compchemeng.2019.05.018.

L. Yang, J. Zhang, P. Song, and Z. Wang. (2018). Layer-by-layer assembly for preparation of high-performance forward osmosis membrane. IOP Conf. Ser. Mater. Sci. Eng., 301(1), 1-8. Doi: 10.1088/1757-899X/301/1/012032.

B. Al-Anzi, A. Thomas, and J. Fernandes. (2016). Lab scale assessment of power generation using pressure retarded osmosis from wastewater treatment plants in the state of Kuwait. Desalination, 396, 57-69. Doi: 10.1016/J.DESAL.2016.06.005.

M. Kondo and H. Sato. (1994). Treatment of wastewater from phenolic resin process by pervaporation. Desalination, 98(1-3), 147-154. Doi: 10.1016/0011-9164(94)00139-1.

A. Saud, H. Saleem, and S. J. Zaidi. (2022). Membranes progress and prospects of nanocellulose-based membranes for desalination and water Treatment. Doi: 10.3390/membranes12050462.

W. Kujawski, A. Warszawski, W. Ratajczak, T. Porębski, W. Capała, and I. Ostrowska. (2004). Application of pervaporation and adsorption to the phenol removal from wastewater. Sep. Purif. Technol., 40(2), 123-132. Doi: 10.1016/j.seppur.2004.01.013.

E. Quiñones-Bolaños, H. Zhou, and G. Parkin. (2005). Membrane pervaporation for wastewater reuse in microirrigation. J. Environ. Eng., 131, 1633-1643. Doi: 10.1061/(ASCE)0733-9372(2005)131:12(1633).

Z. Xie, N. Li, Q. Wang, and B. Bolto. (2018). Desalination by pervaporation. Emerging Technologies for Sustainable Desalination Handbook. Elsevier. 205-226. Doi: 10.1016/B978-0-12-815818-0.00006-0.

W. N. Alharbi, W. S. Saeed, A. A. Alwarthan, A. Y. Badjah-Hadj-Ahmed, and T. Aouak. (2021). Extraction of organic volatile pollutants in over-saturated water by pervaporation technique using a poly (dimethylsiloxane)-based sealer as a membrane. Water, 13(8), 1049. Doi: 10.3390/w13081049.

A. Alkhudhiri, M. Hakami, M.-P. Zacharof, H. Abu Homod, and A. Alsadun. (2020). Mercury, arsenic and lead removal by air gap membrane distillation: experimental study. Water, 12(6), 1574. Doi: 10.3390/w12061574.

S. Kalla. (2021). Use of membrane distillation for oily wastewater treatment – A review. J. Environ. Chem. Eng., 9(1), 104641. Doi: 10.1016/j.jece.2020.104641.

L. Li, X. Liu, and H. Li. (2017). A review of forward osmosis membrane fouling: types, research methods and future prospects. Environ. Technol. Rev., 6(1), 26-46. Doi: 10.1080/21622515.2016.1278277.

S. Castelletto and A. Boretti. (2021). Advantages, limitations, and future suggestions in studying graphene-based desalination membranes. RSC Adv., 11, 7981-8002. Doi: 10.1039/d1ra00278c.

A. C. Mecha. (2018). Applications of reverse and forward osmosis processes in wastewater treatment: Evaluation of membrane fouling. Osmotically Driven Membrane Processes - Approach, Development and Current Status, InTech. Doi: 10.5772/intechopen.72971.

M. Alsheyab and S. Kusch-Brandt. (2018). Potential recovery assessment of the embodied resources in Qatar’s Wastewater. Sustainability, 10(9), 3055. Doi: 10.3390/su10093055.

F. T. Shadid and S. Ahmed. (1992). Operation and maintenance of sewage treatment plant in DOHA.

A. Alkhudhiri, N. Bin Darwish, and N. Hilal. (2019). Analytical and forecasting study for wastewater treatment and water resources in Saudi Arabia. J. Water Process Eng., 32, 100915. Doi: 10.1016/j.jwpe.2019.100915.

A. O. Al-Jasser. (2011). Saudi wastewater reuse standards for agricultural irrigation: Riyadh treatment plants effluent compliance. J. King Saud Univ. - Eng. Sci., 23(1), 1-8. Doi: 10.1016/j.jksues.2009.06.001.

A. M. Ghanem et al. (2021). The economic dimension of directing treated wastewater to the production of green fodder in Saudi Arabia. Saudi J. Biol. Sci., 28(8), 4825-4832. Doi: 10.1016/j.sjbs.2021.05.012.

S. Dalahmeh and C. Baresel. (2014). Reclaimed wastewater use alternatives and quality standards from global to country perspective: Spain versus Abu Dhabi Emirate.

MuthannaAl-omar. (2016). The role of desalinated water in integrated water resource management in Abu Dhabi Emirate-UAE. The Online Journal of Science and Technology. 2(4), 90-96.

Esra Aleisa, Khawla Al-Shayji. (2019). Analysis on reclamation and reuse of wastewater in Kuwait. Journal of Engineering Research. 7(1).

E. Al-Abdulghani, A. El-Sammak, and M. Sarawi. (2013). Environmental assessment of Kuwait Bay: An integrated approach. J. Coast. Conserv., 17(3), 445-462. Doi: 10.1007/s11852-013-0242-7.

A. E. Dare et al. (2017). Opportunities and challenges for treated wastewater reuse in the West Bank, Tunisia, and Qatar. Trans. ASABE, 60(5), 1563-1574. Doi: 10.13031/trans.12109.

VA Tech Wabag. (2021). Madinat Salman WWTP- Sustainable wastewater model for a rapidly growing Bahrain.

Meed. (2019). Bahrain plans new sewage treatment plant.

Water-Technology. (2019). Oman to invest $7bn on wastewater treatment.

M. Baawain, A. Sana, R. Al-Yahyai, and P. Amoatey. (2019). Sustainable reuse options of treated effluents: A case study from Muscat, Oman. J. Environ. Eng. Sci., 14(4), 195-202. Doi: 10.1680/jenes.19.00019.

Q. (2021). The planning and statistics authority. WATER Statistics Qatar.

S. Bhattacharjee, G. Dersel, A. Shanableh, N. Darwish, and M. Al-Samarai. (2020). Challenges & opportunities of wastewater reuse privatization: A case study from Sharjah, UAE. 2020 Advances in Science and Engineering Technology International Conferences (ASET). 1-5. Doi: 10.1109/ASET48392.2020.9118342.

BluewaterBio. (2019). Bluewater Bio bags Bahraini upgrade project.

Z. Liao et al. (2021). Wastewater treatment and reuse situations and influential factors in major Asian countries. J. Environ. Manage., 282, 111976. Doi: 10.1016/j.jenvman.2021.111976.




How to Cite

Saleem, H., Mohammad Khan, M., Alkaabi, M., Boudjema, N., Alshowaikh, F., & Javaid Zaidi, S. (2023). An Overview of Wastewater Treatment and Reuse in The Gulf Cooperation Council Countries . Journal of Applied Membrane Science & Technology, 27(3), 19–67.