A Review on Membrane Fabrication: Structure, Properties and Performance Relationship

Authors

  • H. Y. Chong Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
  • S. A. H. Muhammad Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
  • S. N. Norazmi Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
  • Z. H. Chang Department of Chemical and Petroleum Engineering, Faculty of Engineering, Technology and Built Environment, UCSI University, 56000 Kuala Lumpur, Malaysia.
  • Y. H. Teoh ᵃDepartment of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia ᶜResearch Centre for Sustainable Process Technology (CESPRO), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia ᵈCleaner Production – UKM Research Group, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

DOI:

https://doi.org/10.11113/jamst.v29n1.311

Keywords:

Polymeric membranes, membrane fabrication, pore structure, physicochemical property, water treatment

Abstract

Polymeric membranes have been widely explored and applied in both academic and industrial sectors. Their high separation efficiency, versatility, and scalability make them an alternative to conventional separation processes. This review presents recent developments in flat-sheet polymeric membranes for water treatment applications, focusing on fabrication methods, membrane formulation parameters, and structure-property-performance relationships. Common fabrication methods, including phase inversion, interfacial polymerization, stretching, track-etching, and electrospinning, are examined in terms of fabrication mechanisms, operating conditions and membrane structures. While these methods may utilize similar base polymers, they result in distinct membrane structures that are customized to specific applications. In addition, the influence of formulation parameters, such as polymer and solvent selection, polymer concentration, and additives used, are thoroughly discussed to obtain desired physicochemical properties for specific membrane applications. Furthermore, the membrane structural properties, including crystallinity, pore morphology, and surface characteristics, like hydrophilicity, surface charge, and roughness, are discussed to better understand their impact on membrane permeability and solute selectivity. Advanced characterization techniques for analysing these properties are also explored. Lastly, this review explores future directions for polymeric membrane technology in respect to the materials used, post-treatment of used membrane, the integration with artificial intelligence technologies, and assessment on industrial scalability of modified membrane. By integrating recent advancements, addressing existing challenges, and identifying future opportunities, this review provides a foundation for advancing polymeric membrane technologies and promoting innovation in water treatment solutions.

References

S. M. Alardhi, N. S. Ali, N. M. C. Saady, S. Zendehboudi, I. K. Salih, J. M. Alrubaye, T. M. Albayati. (2024). Separation techniques in different configurations of hybrid systems via synergetic adsorption and membrane processes for water treatment: A review. J. Ind. Eng. Chem., 130, 91–104. https://doi.org/https://doi.org/10.1016/j.jiec.2023.09.051.

T. Yeit Haan, M. S. H. Ghani, A. W. Mohammad. (2018). Physical and chemical cleaning for nanofiltration/reverse osmosis (NF/RO) membranes in treatment of tertiary palm oil mill effluent (POME) for water reclamation. J. Kejuruter., SI1, 51–58. https://doi.org/10.17576/jkukm-2018-si1(4)-07.

D. V. Nguyen, D. Wu. (2024). Recent advances in innovative osmotic membranes for resource enrichment and energy production in wastewater treatment. Sci. Total Environ., 927. https://doi.org/10.1016/j.scitotenv.2024.172153.

T. S. Vo, K. M. Lwin, K. Kim, (2024). Recent developments of nano-enhanced composite membranes designed for water/wastewater purification—A review. Adv Compos Hybrid Mater., 7, 127. https://doi.org/10.1007/s42114-024-00923-5.

N. Abdullah, M. A. Rahman, M. H. D. Othman, J. Jaafar, A. F. Ismail. (2018). Membranes and membrane processes: fundamentals. Editor(s): Angelo Basile, Sylwia Mozia, Raffaele Molinari. Current Trends and Future Developments on (Bio-) Membranes. Elsevier Inc., https://doi.org/10.1016/B978-0-12-813549-5.00002-5.

Z. H. Chang, L. H. T. Lyly, Y. H. Teow, S. P. Yeap, J. Y. Sum. (2023). Insight into polydopamine coating on microfiltration membrane with controlled surface pore size for enhanced membrane rejection. Polymer (Guildf), 287, 126446. https://doi.org/10.1016/j.polymer.2023.126446.

T. Lan, Y. Chang, J. Song, L. Meng, P. Zhao, J. Lei, J. Xu. (2024). Dual synergies of functionalized hydrophilic MOFs based poly (aryl ether ketone sulfone) ultrafiltration membranes: Electrostatic action and pore size screening. J. Environ. Chem. Eng., 12, 113788. https://doi.org/10.1016/j.jece.2024.113788.

N. N. R. Ahmad, W. L. Ang, Y. H. Teow, A. W. Mohammad, N. Hilal, Nanofiltration membrane processes for water recycling, reuse and product recovery within various industries: A review. (2022). J. Water Process Eng., 45, 102478. https://doi.org/10.1016/j.jwpe.2021.102478.

Y. Mei, X. Li, Z. Yao, W. Qing, A. G. Fane, C. Y. Tang. (2020). Simulation of an energy self-sufficient electrodialysis desalination stack for salt removal efficiency and fresh water recovery. J. Memb. Sci., 598, 117771. https://doi.org/https://doi.org/10.1016/j.memsci.2019.117771.

Z. H. Chang, J. Y. Sum, W. J. Lau, W. L. Ang, Y. H. Teow, B. S. Ooi, S. P. Yeap. (2024). Current state-of-the-art of non-reverse osmosis-like forward osmosis technology. J. Memb. Sci., 711, 123209. https://doi.org/10.1016/j.memsci.2024.123209.

G. Simoni, B.S. Kirkebæk, C. A. Quist-Jensen, M. L. Christensen, A. Ali. (2021). A comparison of vacuum and direct contact membrane distillation for phosphorus and ammonia recovery from wastewater. J. Water Process Eng., 44, 102350. https://doi.org/10.1016/j.jwpe.2021.102350.

S. H. Rasheed, S. S. Ibrahim, Q. F. Alsalhy, H. S. Majdi. (2023). Polydimethylsiloxane (PDMS) membrane for separation of soluble toluene by pervaporation process. Membranes (Basel), 13. https://doi.org/10.3390/membranes13030289.

W. J. Ang, Y. H. Teow, Z. H. Chang, A. W. Mohammad, T. W. Wan. (2024). Innovative ceramic membrane plate filtration system for sustainable semiconductor industry wastewater treatment: A pilot scale study. Chem. Eng. J., 496, 153767. https://doi.org/10.1016/j.cej.2024.153767.

S. Karki, G. Hazarika, D. Yadav, P. G. Ingole, (2024). Polymeric membranes for industrial applications: Recent progress, challenges and perspectives. Desalination, 573, 117200. https://doi.org/https://doi.org/10.1016/j.desal.2023.117200.

R. Elsayed, Y. H. Teow. (2025). Advanced functional polymer materials for biomedical applications. J. Appl. Polym. Sci., 142, e56391. https://doi.org/https://doi.org/10.1002/app.56391.

S. R. Ravichandran, C. D. Venkatachalam, M. Sengottian, S. Sekar, B. S. Subramaniam Ramasamy, M. Narayanan, A. V. Gopalakrishnan, S. Kandasamy, R. Raja. (2022). A review on fabrication, characterization of membrane and the influence of various parameters on contaminant separation process, Chemosphere, 306, 135629. https://doi.org/10.1016/j.chemosphere.2022.135629.

X. Dong, A. Al-Jumaily, I. C. Escobar. (2018). Investigation of the use of a bio-derived solvent for non-solvent-induced phase separation (NIPS) fabrication of polysulfone membranes. Membranes (Basel), 8, https://doi.org/10.3390/membranes8020023.

R. Pervin, P. Ghosh, M. G. Basavaraj. (2019). Tailoring pore distribution in polymer films via evaporation induced phase separation. RSC Adv., 9, 15593–15605. https://doi.org/10.1039/c9ra01331h.

F. Lu, H. Liu, C. Xiao, X. Wang, K. Chen, H. Huang. (2019). Effect of on-line stretching treatment on the structure and performance of polyvinyl chloride hollow fiber membranes. RSC Adv., 9, 6699–6707. https://doi.org/10.1039/c9ra00265k.

K. Ghosal, A. Chandra, G. Praveen, S. Snigdha, S. Roy, C. Agatemor, S. Thomas, I. Provaznik. (2018). Electrospinning over solvent casting: Tuning of mechanical properties of membranes. Sci. Rep., 8, 1–10. https://doi.org/10.1038/s41598-018-23378-3.

P. Y. Apel. (2013). Track‐etching. Encycl. Membr. Sci. Technol., 1–25. https://doi.org/10.1002/9781118522318.emst040.

L. Zhao, X. Zhang, B. He, B. Liu, C. Xia. (2011). Micro-tubular solid oxide fuel cells with graded anodes fabricated with a phase inversion method. J. Power Sources, 196, 962–967. https://doi.org/10.1016/j.jpowsour.2010.08.074.

J. Jaafar, A. M. Nasir. (2022). Grand challenge in membrane fabrication: membrane science and technology. Front. Membr. Sci. Technol., 1, 1–6. https://doi.org/10.3389/frmst.2022.883913.

X. M. Tan, D. Rodrigue. (2019). A review on porous polymeric membrane preparation. Part II: Production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers (Basel). 11, 1310. https://doi.org/10.3390/polym11081310.

O. W. Reif. (2006). Microfiltration membranes: characteristics and manufacturing. Adv. Biochem. Eng. Biotechnol., 98, 73–103. https://doi.org/10.1007/b10424.

A. A. I. A. S. Komaladewi, P. T. P. Aryanti, G. Lugito, I. Wayan Surata, I. Gede Wenten. (2018). Recent progress in microfiltration polypropylene membrane fabrication by stretching method. E3S Web Conf., 67, 1–7. https://doi.org/10.1051/e3sconf/20186703018.

A. Ranjbarzadeh-Dibazar, P. Shokrollahi, J. Barzin, A. Rahimi. (2014). Lubricant facilitated thermo-mechanical stretching of PTFE and morphology of the resulting membranes. J. Memb. Sci., 470, 458–469. https://doi.org/10.1016/j.memsci.2014.07.062.

S. Y. Lee, S. Y. Park, H. S. Song. (2006). Lamellar crystalline structure of hard elastic HDPE films and its influence on microporous membrane formation. Polymer (Guildf), 47, 3540–3547. https://doi.org/10.1016/j.polymer.2006.03.070.

S. Feng, Z. Zhong, Y. Wang, W. Xing, E. Drioli. (2018). Progress and perspectives in PTFE membrane: Preparation, modification, and applications. J. Memb. Sci., 549. 332–349. https://doi.org/10.1016/j.memsci.2017.12.032.

X. Chen, C. Wan, R. Yu, L. Meng, D. Wang, T. Duan, L. Li. (2020). Fabrication of amidoximated polyacrylonitrile nanofibrous membrane by simultaneously biaxial stretching for uranium extraction from seawater. Desalination, 486, 35–38. https://doi.org/10.1016/j.desal.2020.114447.

Z. Li, C. Wang. (2013). Electrospinning technique and unique nanofibers. One–Dimensional Nanostructures. 141, 145.

Y. Li, J. Zhu, H. Cheng, G. Li, H. Cho, M. Jiang, Q. Gao, X. Zhang. (2021). Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol., 6, 1–29. https://doi.org/10.1002/admt.202100410.

V. M. Bystritsky, G. N. Dudkin, S. I. Kuznetsov, V. A. Varlachev, V. N. Padalko. (2016). Experiment to find the neutron clusters in the decay of 238U nuclei, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,Nuclear Instruments and Methods in Physics Research A Experiment to find the neutron clusters in the decay of U nuclei, 834, 164–168.

A. Shiohara, B. Prieto-Simon, N. H. Voelcker. (2021). Porous polymeric membranes: fabrication techniques and biomedical applications. J. Mater. Chem. B., 9, 2129–2154. https://doi.org/10.1039/d0tb01727b.

W. Starosta. (n.d). Chapter 18 Radiation use in producing track-etched membranes, In: Appl. Ioniz. Radiat. Mater. Process, 415–445.

P. Apel. (2001). Track etching technique in membrane technology. Radiat. Meas., 34, 559–566. https://doi.org/10.1016/S1350-4487(01)00228-1.

B. S. Lalia, V. Kochkodan, R. Hashaikeh, N. Hilal. (2013). A review on membrane fabrication: Structure, properties and performance relationship. Desalination, 32677–95. https://doi.org/10.1016/J.DESAL.2013.06.016.

G. R. Guillen, Y. Pan, M. Li, E. M. V. Hoek. (2011). Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res., 50, 3798–3817. https://doi.org/10.1021/ie101928r.

A. Yushkin, A. Balynin, M. Efimov, K. Pochivalov, I. Petrova. A. Volkov. (2022). Fabrication of polyacrylonitrile UF membranes by VIPS method with acetone as co-solvent. Membr., 12, 523. https://doi.org/10.3390/MEMBRANES12050523.

P. T. P. Aryanti, F. A. Nugroho, I. N. Widiasa, P. D. Sutrisna, I. G. Wenten. (2022). Preparation of highly selective PSf/ZnO/PEG400 tight ultrafiltration membrane for dyes removal. J. Appl. Polym. Sci., 139, e52779. https://doi.org/10.1002/APP.52779.

S. Lin, A. C. Semiao, Y. Zhang, S. Lu, C. H. Lau. (2024). Interfacial polymerization using biobased solvents and their application as desalination and organic solvent nanofiltration membranes. J. Memb. Sci., 692, 122281. https://doi.org/10.1016/J.MEMSCI.2023.122281.

W. Shen, F. Ao, X. Ge, Y. Ning, L. Wang, H. Ren, G. Fan. (2022). Effects of solvents on electrospun fibers and the biological application of different hydrophilic electrospun mats. Mater. Today Commun., 30, 103093. https://doi.org/10.1016/J.MTCOMM.2021.103093.

M. J. Mochane, T. S. Motsoeneng, E. R. Sadiku, T. C. Mokhena, J. S. Sefadi. (2019). Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Appl. Sci., 9, 2205. https://doi.org/10.3390/APP9112205.

H. S. Fahmy, R. Abouzeid, M. S. A. El-sadek, G. T. Abdel-Jaber, W. Y. Ali, H. M. Mousa. (2023). Fabrication of polysulfone membranes by blending with polyaniline and cellulose nanocrystals: towards the effective separation of oil-in-water emulsions. Cellulose, 30, 5871–5893. https://doi.org/10.1007/s10570-023-05237-1.

R. Xie, A. R. Weisen, Y. Lee, M. A. Aplan, A. M. Fenton, A. E. Masucci, F. Kempe, M. Sommer, C.W. Pester, R. H. Colby, E. D. Gomez. (2020). Glass transition temperature from the chemical structure of conjugated polymers. Nat. Commun., 11, 4–11. https://doi.org/10.1038/s41467-020-14656-8.

N. Nasrollahi, L. Ghalamchi, V. Vatanpour, A. Khataee, M. Yousefpoor. (2022). Novel polymeric additives in the preparation and modification of polymeric membranes: A comprehensive review. J. Ind. Eng. Chem., 109, 100–124. https://doi.org/10.1016/J.JIEC.2022.02.036.

X. Dong, D. Lu, T. A. L. Harris, I. C. Escobar. (2021). Polymers and solvents used in membrane fabrication: a review focusing on sustainable membrane development. Membranes (Basel), 11, https://doi.org/10.3390/MEMBRANES11050309.

R. H. Hailemariam, J. S. Choi, M. M. Damtie, H. Rho, K. D. Park, J. Lee, Y. C. Woo. (2022). Enhancing performances of polyamide thin film composite membranes via co-solvent assisted interfacial polymerization. Desalination, 524, 115481. https://doi.org/10.1016/J.DESAL.2021.115481.

T. H. A. Ngo, C. T. M. Nguyen, K. D. Do, Q. X. Duong, N. H. Tran, H. T. V. Nguyen, D. T. Tran. (2020). Improvement of hydrophilicity for polyamide composite membrane by incorporation of graphene oxide-titanium dioxide nanoparticles. J. Anal. Methods Chem., 6641225. https://doi.org/10.1155/2020/6641225.

A. K. Shakayeva, A. B. Yeszhanov, A. N. Borissenko, M. T. Kassymzhanov, A. T. Zhumazhanova, N. A. Khlebnikov, A. K. Nurkassimov, M. V. Zdorovets, O. Güven, I. V. Korolkov. (2024). Surface modification of polyethylene terephthalate track-etched membranes by 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptyl acrylate for application in water desalination by direct contact membrane distillation. Membranes (Basel), 14, 145. https://doi.org/10.3390/MEMBRANES14070145/S1.

M. W. Azmil Arif, A. H. Nurfaizey, M. A. Salim, N. A. Masripan, J. Jaafar, M. H. D. Othman. (2022). Electrospinning of polyacrylonitrile nanofibres and applications in membrane distillation technology: a review. Int. J. Nanoelectron. Mater., 15183–207.

H. Abdelrazeq, M. Khraisheh, F. Al Momani, J. T. McLeskey, M. K. Hassan, M. Gad-el-Hak, H. V. Tafreshi. (2020). Performance of electrospun polystyrene membranes in synthetic produced industrial water using direct-contact membrane distillation. Desalination, 493. https://doi.org/10.1016/J.DESAL.2020.114663.

A. K. Hołda, B. Aernouts, W. Saeys, I. F. J. Vankelecom. (2013). Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. J. Memb. Sci., 442, 196–205. https://doi.org/10.1016/j.memsci.2013.04.017.

N. A. Shafie, M. N. Abu Seman, S. M. Saufi, A. W. Mohammad. (2023). Influence of Polyethersulfone substrate properties on the performance of thin film composite forward osmosis membrane: Effect of additive concentration, polymer concentration and casting thickness. Chem. Eng. Res. Des., 200, 186–201. https://doi.org/10.1016/j.cherd.2023.10.034.

N. Ali, H. Sofiah, A. Asmadi, A. Endut. (2011). Preparation and characterization of a polysulfone ultrafiltration membrane for bovine serum albumin separation: Effect of polymer concentration. Desalin. Water Treat., 32, 248–255. https://doi.org/10.5004/dwt.2011.2707.

D. Ariono, P. T. P. Aryanti, S. Subagjo, I. G. Wenten. (2017). The effect of polymer concentration on flux stability of polysulfone membrane. AIP Conf. Proc., 1788. https://doi.org/10.1063/1.4968301.

M. A. U. R. Alvi, M. W. Khalid, N. M. Ahmad, M. B. K. Niazi, M. N. Anwar, M. Batool, W. Cheema, S. Rafiq. (2019). Polymer concentration and solvent variation correlation with the morphology and water filtration analysis of polyether sulfone microfiltration membrane. Adv. Polym. Technol., 2019, 8074626. https://doi.org/10.1155/2019/8074626.

N. M. Ismail, N. R. Jakariah, N. Bolong, S. M. Anissuzaman, N. A. H. M. Nordin, A. R. Razali. (2017). Effect of polymer concentration on the morphology and mechanical properties of asymmetric polysulfone (PSf) membrane. J. Appl. Membr. Sci. Technol., 21, 33–41. https://doi.org/10.11113/amst.v21i1.107.

A. Jalali, A. Shockravi, V. Vatanpour, M. Hajibeygi. (2016). Preparation and characterization of novel microporous ultrafiltration PES membranes using synthesized hydrophilic polysulfide-amide copolymer as an additive in the casting solution. Microporous Mesoporous Mater., 228, 1–13. https://doi.org/10.1016/J.MICROMESO.2016.03.024.

J. Rezania, A. Shockravi, V. Vatanpour, M. Ehsani. (2019). Preparation and performance evaluation of carboxylic acid containing polyamide incorporated microporous ultrafiltration PES membranes. Polym. Adv. Technol., 30, 407–416. https://doi.org/10.1002/PAT.4478.

Z. H. Chang, Y. H. Teow, S. P. Yeap, J. Y. Sum. (2021). Membrane fouling – The Enemy of forward osmosis. J. Appl. Membr. Sci. Technol., 25, 73–88. https://doi.org/10.11113/amst.v25n2.220.

K. Samree, P. U. Srithai, P. Kotchaplai, P. Thuptimdang, P. Painmanakul, M. Hunsom, S. Sairiam. (2020). Enhancing the antibacterial properties of PVDF membrane by hydrophilic surface modification using titanium dioxide and silver nanoparticles. Membranes (Basel), 10, 1–18. https://doi.org/10.3390/membranes10100289.

P. Boruah, R. Gupta, V. Katiyar. (2023). Fabrication of cellulose nanocrystal (CNC) from waste paper for developing antifouling and high-performance polyvinylidene fluoride (PVDF) membrane for water purification. Carbohydr. Polym. Technol. Appl., 5, 100309. https://doi.org/10.1016/j.carpta.2023.100309.

K. C. Ho, Y. H. Teow, W. L. Ang, A. W. Mohammad. (2017). Novel GO/OMWCNTs mixed-matrix membrane with enhanced antifouling property for palm oil mill effluent treatment. Sep. Purif. Technol., 177, 337–349. https://doi.org/10.1016/j.seppur.2017.01.014.

Y. Yin, N. Jeong, R. Minjarez, C. A. Robbins, K. H. Carlson, T. Tong. (2021). Contrasting behaviors between gypsum and silica scaling in the presence of antiscalants during membrane distillation. Environ. Sci. Technol., 55, 5335–5346. https://doi.org/10.1021/acs.est.0c07190.

L. Xu, B. Shan, C. Gao, J. Xu. (2020). Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. J. Memb. Sci., 593, 117398. https://doi.org/10.1016/j.memsci.2019.117398.

A. I. Nazri, A. L. Ahmad, M. H. Hussin. (2021). Microcrystalline cellulose-blended polyethersulfone membranes for enhanced water permeability and humic acid removal. Membranes (Basel), 11. https://doi.org/10.3390/membranes11090660.

Y. J. Li, G. E. Chen, H. Y. Xie, Z. Chen, Z. L. Xu, H. F. Mao. (2022). Increasing the hydrophilicity and antifouling properties of polyvinylidene fluoride membranes by doping novel nano-hybrid ZnO@ZIF-8 nanoparticles for 4-nitrophenol degradation. Polym. Test, 113, 107613. https://doi.org/10.1016/j.polymertesting.2022.107613.

J. Chen, J. Zhang, X. Wu, X. Cui, W. Li, H. Zhang, J. Wang, X.Z. Cao, P. Zhang. (2020). Accurately controlling the hierarchical nanostructure of polyamide membranes: Via electrostatic atomization-assisted interfacial polymerization. J. Mater. Chem. A., 8, 9160–9167. https://doi.org/10.1039/d0ta02150d.

Z. Kang, H. Guo, L. Fan, G. Yang, Y. Feng, D. Sun, S. Mintova. (2021). Scalable crystalline porous membranes: Current state and perspectives. Chem. Soc. Rev., 50, 1913–1944. https://doi.org/10.1039/d0cs00786b.

M. Li, Y. Cao, Y. Xiong, G. Qing. (2023). Hierarchically engineered nanochannel systems with pore-in/on-pore structures. NPG Asia Mater., 15. https://doi.org/10.1038/s41427-022-00451-y.

P. Knauth, L. Pasquini, R. Narducci, E. Sgreccia, R. A. Becerra-Arciniegas, M. L. Di Vona. (2021). Effective ion mobility in anion exchange ionomers: Relations with hydration, porosity, tortuosity, and percolation. J. Memb. Sci., 617, 1–22. https://doi.org/10.1016/j.memsci.2020.118622.

M. G. Shin, J. Y. Seo, H. Park, Y. I. Park, J. H. Lee. (2021). Overcoming the permeability-selectivity trade-off of desalination membranes via controlled solvent activation. J. Memb. Sci., 620, 118870. https://doi.org/10.1016/j.memsci.2020.118870.

Y. Yong-Biao. 2023. A mini‐review of polymeric porous membranes with vertically penetrative pores. Journal of Polymer Science. 62, 492–507.

M. F. A. Al-Ogaili, M. H. D. Othman, M. Rava, Z. S. Tai, M. H. Puteh, J. Jaafar, M. A. Rahman, T. A. Kurniawan, O. Samuel, A. Imtiaz. (2023). Enhancing Hydrophobic/Hydrophilic Dual-Layer Membranes for Membrane Distillation: The Influence of Polytetrafluoroethylene (PTFE) Particle Size and Concentration. Sustainability. 15(20). https://doi.org/10.3390/su152014931.

A. Samadi, T. Ni, E. Fontananova, G. Tang, H. Shon, S. Zhao. (2023). Engineering antiwetting hydrophobic surfaces for membrane distillation: A review. Desalination, 563, 116722. https://doi.org/10.1016/j.desal.2023.116722.

B. B. Guo, C. Liu, C. Y. Zhu, J. H. Xin, C. Zhang, H. C. Yang, Z. K. Xu. (2024). Double charge flips of polyamide membrane by ionic liquid-decoupled bulk and interfacial diffusion for on-demand nanofiltration. Nat. Commun., 15, 1–11. https://doi.org/10.1038/s41467-024-46580-6.

E. S. Dmitrieva, T. S. Anokhina, E. G. Novitsky, V. V. Volkov, A. V. Volkov, I. L. Borisov. (2022). Polymeric membranes for oil-water separation: a review. Polymers (Basel), 14, 1–25. https://doi.org/10.3390/polym14050980.

N. N. R. Ahmad, A. W. Mohammad, E. Mahmoudi, W. L. Ang, C. P. Leo, Y. H. Teow. (2022). An overview of the modification strategies in developing antifouling nanofiltration membranes. Membranes (Basel), 12, 1–30. https://doi.org/10.3390/membranes12121276.

J. O. Eniola, J. Kujawa, A. Nwokoye, S. Al-Gharabli, A. K. Avornyo, A. Giwa, H. K. Amusa, A. O. Yusuf, J. A. Okolie. (2024). Advances in electrochemical membranes for water treatment: A comprehensive review. Desalin. Water Treat., 319, 100450. https://doi.org/10.1016/j.dwt.2024.100450.

J. Meier-Haack, P. Nikolaeva, C. Langner. (2014). Surface modification of membranes for fouling reduction. 21st Int. Congr. Chem. Process Eng. CHISA 2014 17th Conf. Process Integr. Model. Optim. Energy Sav. Pollut. Reduction, 1, 521. https://doi.org/10.12775/cl.2015.008.

J. Wang, Y. Dai, R. Wan, W. Wei, S. Xu, F. Zhai, R. He. (2021). Grafting free radical scavengers onto polyarylethersulfone backbones for superior chemical stability of high temperature polymer membrane electrolytes. Chem. Eng. J., 413, 127541. https://doi.org/10.1016/j.cej.2020.127541.

D. Scheepers, A. Casimiro, Z. Borneman, K. Nijmeijer. (2023). Addressing specific (poly)ion effects for layer-by-layer membranes. ACS Appl. Polym. Mater., 5, 2032–2042. https://doi.org/10.1021/acsapm.2c02078.

V. M. Barragán, J. P. G. Villaluenga, M. A. Izquierdo-Gil, K. R. Kristiansen. (2021). On the electrokinetic characterization of charged polymeric membranes by transversal streaming potential. Electrochim. Acta, 387. https://doi.org/10.1016/j.electacta.2021.138462.

N. AlQasas, D. Johnson. (2024). Combined effects of surface roughness, solubility parameters, and hydrophilicity on biofouling of reverse osmosis membranes. Membranes (Basel), 14. https://doi.org/10.3390/membranes14110235.

I. B. Muslimova, Z. K. Zhatkanbayeva, D. D. Omertasov, G. B. Melnikova, A. B. Yeszhanov, O. Güven, S. A. Chizhik, M. V Zdorovets, I. V Korolkov. (2023). Stimuli-responsive track-etched membranes for separation of water – oil emulsions, Membranes, 13(5), 523. https://doi.org/10.3390/membranes13050523.

S. J. Zaidi, K. A. Mauritz, M. K. Hassan. (2018). Membrane Surface Modification And Functionalization BT- Functional Polymers. In: M. A. Jafar Mazumder, H. Sheardown, A. Al-Ahmed (Eds.). Springer International Publishing, Cham, 1–26. https://doi.org/10.1007/978-3-319-92067-2_11-1.

X. Shen, P. Gao, W. Yang, Y. Ding, C. Bao, Z. Wei, K. Tian. (2023). Study on the hydrophobic modification of PVDF membrane by low-temperature plasma etching in combination with grafting in supercritical carbon dioxide. Vacuum, 209, 111782. https://doi.org/https://doi.org/10.1016/j.vacuum.2022.111782.

D. Suresh, P. S. Goh, A. F. Ismail, N. Hilal. (2021). Surface design of liquid separation membrane through graft polymerization: A state of the art review. Membranes (Basel), 11. https://doi.org/10.3390/membranes11110832.

J. Wang, X. Chen, R. Reis, Z. Chen, N. Milne, B. Winther-Jensen, L. Kong, L. F. Dumée. (2018). Plasma modification and synthesis of membrane materials—A mechanistic review. Membranes (Basel), 8, 1–38. https://doi.org/10.3390/membranes8030056.

Downloads

Published

2025-03-27

How to Cite

Chong, H. Y., Muhammad, S. A. H., Norazmi, S. N., Chang, Z. H., & Teoh, Y. H. (2025). A Review on Membrane Fabrication: Structure, Properties and Performance Relationship. Journal of Applied Membrane Science & Technology, 29(1), 73–97. https://doi.org/10.11113/jamst.v29n1.311

Issue

Section

Articles