Recent Developments in Synthesis of Nanomaterial for Agriculture: The Role of Supercritical Fluid Technology

Authors

  • Muhammad Akmal Mohd Faisal ᵃAdvanced Membrane Technology Research Centre (AMTEC), ᵈFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Anis Ireena Kamarul’Zaman Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohamad Sukri Mohamad Yusof ᵇAdvanced Materials and Separation Technologies (AMSET), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵈFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Mohd Hafiz Dzarfan Othman ᵃAdvanced Membrane Technology Research Centre (AMTEC), ᵈFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Hajar Alias ᶜChemical Reaction Engineering Group (CREG), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵈFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Amnani Shamjuddin ᶜChemical Reaction Engineering Group (CREG), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵈFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Nur Rashyeda Hj Ramli Malaysian Palm Oil Board (MPOB), Bandar Baru Bangi, 43000 Kajang, Malaysia
  • Mohd Hefni Rusli Malaysian Palm Oil Board (MPOB), Bandar Baru Bangi, 43000 Kajang, Malaysia

DOI:

https://doi.org/10.11113/jamst.v29n3.331

Keywords:

Nanofungicides, nanoherbicides, nanoparticles, active ingredients, supercritical fluid technology, nano delivery system

Abstract

Fungal diseases, such as Ganoderma boninense, pose significant economic threats to oil palm plantations. Conventional fungicides, including synthetic and biofungicides, have been employed to manage these diseases, but they come with limitations such as environmental impact and limited efficacy. Other than that, weed infestation is another serious challenge in agricultural systems such as oil palm plantations. Synthetic herbicides and bioherbicides have been widely use to mitigate this problem but herbicides still have limitation in terms of health concerns. Recent advancements in nanotechnology have introduced nano-enabled crop protection most notably nanofungicides and nanoherbicides as promising alternatives, offering improved penetration and delivery of active ingredients. However, challenges such as non-uniform size distribution and polydispersity hinder their effectiveness. This review explores the potential of supercritical fluid technology (SFT) to overcome these limitations, providing a green and sustainable approach to nanoparticle production. SFT offers distinct advantages, including moderate operating temperatures and non-toxic solvents, aligning with the principles of green chemistry. The unique properties of SFT-produced nanomaterials, particularly their high surface area-to-volume ratio, demonstrate significant potential for membrane technology applications beyond agricultural contexts. Future perspectives highlight the need for further research to optimize SFT processes for agricultural applications, aiming to enhance the scalability and cost-effectiveness of nanofungicide and nanoherbicide production. The integration of SFT in agriculture could revolutionize plant disease and weed management, contributing to sustainable and eco-friendly practices.

References

Abbey, J. A., Percival, D., Abbey, L., Asiedu, S. K., Prithiviraj, B., & Schilder, A. (2019). Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea)–prospects and challenges. Biocontrol Science and Technology, 29(3), 207228. https://doi.org/10.1080/09583157.2018.1548574.

Ali, S., Ahmad, N., Dar, M. A., Manan, S., Rani, A., Alghanem, S. M. S., Khan, K. A., Sethupathy, S., Elboughdiri, N., Mostafa, Y. S., Alamri, S. A., Hashem, M., Shahid, M., & Zhu, D. (2024). Nano-agrochemicals as substitutes for pesticides: prospects and risks. Plants, 13(1), 109. https://www.mdpi.com/2223-7747/13/1/109.

Anandaradje, A., Meyappan, V., Kumar, I., & Sakthivel, N. (2019). Microbial synthesis of silver nanoparticles and their biological potential. In Nanoparticles in Medicine (pp. 99133). https://doi.org/10.1007/978-981-13-8954-2_4.

Baldassarre, F., Schiavi, D., Di Lorenzo, V., Biondo, F., Vergaro, V., Colangelo, G., Balestra, G. M., & Ciccarella, G. (2023). Cellulose nanocrystal-based emulsion of thyme essential oil: preparation and characterisation as sustainable crop protection tool. Molecules, 28(23), Article 7884. https://doi.org/10.3390/molecules28237884.

Bokov, D., Turki Jalil, A., Chupradit, S., Suksatan, W., Javed Ansari, M., Shewael, I. H., Valiev, G. H., & Kianfar, E. (2021). Nanomaterial by sol-gel method: synthesis and application. Advances in Materials Science and Engineering, 2021, Article 5102014. https://doi.org/10.1155/2021/5102014.

Brunner, G. (2010). Applications of supercritical fluids. Annual Review of Chemical and Biomolecular Engineering, 1, 321342. https://doi.org/10.1146/annurev-chembioeng-073009-101311.

Coelho, J., Trucillo, P., Nobre, B., Palavra, A. F., Campardelli, R., & Reverchon, E. (2020). Extraction and bioprocessing with supercritical fluids [Article]. Physical Sciences Reviews, 5(9), Article 20180069. https://doi.org/10.1515/psr-2018-0069.

Curl, C. L., Spivak, M., Phinney, R., & Montrose, L. (2020). Synthetic pesticides and health in vulnerable populations: agricultural workers. Current Environmental Health Reports, 7(1), 1329. https://doi.org/10.1007/s40572-020-00266-5.

Del Prado-Audelo, M. L., Bernal-Chávez, S. A., Gutiérrez-Ruíz, S. C., Hernández-Parra, H., Kerdan, I. G., Reyna-González, J. M., Sharifi-Rad, J., & Leyva-Gómez, G. (2022). Stability phenomena associated with the development of polymer-based nanopesticides. Oxidative Medicine and Cellular Longevity, 2022, Article 5766199. https://doi.org/10.1155/2022/5766199.

Díaz-Blancas, V., Medina, D. I., Padilla-Ortega, E., Bortolini-Zavala, R., Olvera-Romero, M., & Luna-Bárcenas, G. (2016). Nanoemulsion formulations of fungicide tebuconazole for agricultural applications. Molecules, 21(10). https://doi.org/10.3390/molecules21101271.

Ethayaraja, M., Dutta, K., Muthukumaran, D., & Bandyopadhyaya, R. (2007). Nanoparticle formation in water-in-oil microemulsions: Experiments, mechanism, and Monte Carlo simulation [Article]. Langmuir, 23(6), 34183423. https://doi.org/10.1021/la062896c.

Gikas, G., Parlakidis, P., Mavropoulos, T., & Vryzas, Z. (2022). Particularities of fungicides and factors affecting their fate and removal efficacy: A review. Sustainability, 14, 4056. https://doi.org/10.3390/su14074056.

Gikas, G. D., Parlakidis, P., Mavropoulos, T., & Vryzas, Z. (2022). Particularities of fungicides and factors affecting their fate and removal efficacy: A review. Sustainability, 14(7), 4056. https://www.mdpi.com/2071-1050/14/7/4056.

Håkansson, A. (2018). Fabrication of nanoemulsions by high-pressure valve homogenization. In Nanoemulsions: Formulation, Applications, and Characterization (pp. 175206). https://doi.org/10.1016/B978-0-12-811838-2.00007-2.

Hamrouni, R., Regus, F., Farnet Da Silva, A. M., Orsiere, T., Boudenne, J. L., Laffont-Schwob, I., Christen, P., & Dupuy, N. (2025). Current status and future trends of microbial and nematode-based biopesticides for biocontrol of crop pathogens. Critical Reviews in Biotechnology, 45(2), 333352. https://doi.org/10.1080/07388551.2024.2370370.

Hayles, J., Johnson, L., Worthley, C., & Losic, D. (2017). 5 - Nanopesticides: a review of current research and perspectives. In A. M. Grumezescu (Ed.), New Pesticides and Soil Sensors (pp. 193-225). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804299-1.00006-0.

Heuschkel, S., Goebel, A., & Neubert, R. H. H. (2008). Microemulsions - Modern colloidal carrier for dermal and transdermal drug delivery [Review]. Journal of Pharmaceutical Sciences, 97(2), 603631. https://doi.org/10.1002/jps.20995

Jazuli, N. A., Kamu, A., Chong, K. P., Gabda, D., Hassan, A., Abu Seman, I., & Ho, C. M. (2022). A review of factors affecting ganoderma basal stem rot disease progress in oil palm. Plants, 11(19), 2462. https://www.mdpi.com/2223-7747/11/19/2462.

Khakimov, A., Omonlikov, A., & Utaganov, S. (2020). Current status and prospects of the use of biofungicides against plant diseases. GSC Biological and Pharmaceutical Sciences, 13, 119126. https://doi.org/10.30574/gscbps.2020.13.3.0403.

Khan, B. A., Nadeem, M. A., Alawadi, H. F. N., Javaid, M. M., Mahmood, A., Qamar, R., Iqbal, M., Mumtaz, A., Maqbool, R., Oraby, H., & Elnaggar, N. (2023). Synthesis, characterization, and evaluation of nanoparticles of clodinofop propargyl and fenoxaprop-P-ethyl on weed control, growth, and yield of wheat (Triticum aestivum L.). Green Processing and Synthesis, 12(1). https://doi.org/doi:10.1515/gps-2023-0105.

Khoo, Y. W., & Chong, K. P. (2024). Corrigendum: Ganoderma boninense: general characteristics of pathogenicity and methods of control. Frontiers in Plant Science, 15, 2024. https://doi.org/10.3389/fpls.2024.1360323.

Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, 10, 2019. https://doi.org/10.3389/fpls.2019.00845.

Köhl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci, 10, 845. https://doi.org/10.3389/fpls.2019.00845.

Koli, P., Bhardwaj, N. R., & Mahawer, S. K. (2019). Chapter 4 - Agrochemicals: Harmful and Beneficial Effects of Climate Changing Scenarios. In K. K. Choudhary, A. Kumar, & A. K. Singh (Eds.), Climate Change and Agricultural Ecosystems (pp. 65-94). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-816483-9.00004-9.

Kumar, J., Ramlal, A., Mallick, D., & Mishra, V. (2021). An overview of some biopesticides and their importance in plant protection for commercial acceptance. Plants, 10(6), 1185. https://www.mdpi.com/2223-7747/10/6/1185.

Liu, F., Wen, L. X., Li, Z. Z., Yu, W., Sun, H. Y., & Chen, J. F. (2006). Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Materials Research Bulletin, 41(12), 22682275. https://doi.org/10.1016/j.materresbull.2006.04.014.

Liu, H., Liang, X., Peng, Y., Liu, G., & Cheng, H. (2024). Supercritical fluids: An Innovative Strategy for Drug development. Bioengineering, 11(8), Article 788. https://doi.org/10.3390/bioengineering11080788.

Madani, M., Hosny, S., Alshangiti, D. M., Nady, N., Alkhursani, S. A., Alkhaldi, H., Al-Gahtany, S. A., Ghobashy, M. M., & Gaber, G. A. (2022). Green synthesis of nanoparticles for varied applications: Green renewable resources and energy-efficient synthetic routes. Nanotechnology Reviews, 11(1), 731759. https://doi.org/10.1515/ntrev-2022-0034.

Maluin, F. N., Hussein, M. Z., Yusof, N. A., Fakurazi, S., Idris, A. S., Zainol Hilmi, N. H., & Jeffery Daim, L. D. (2019). Preparation of Chitosan–Hexaconazole nanoparticles as fungicide nanodelivery system for combating ganoderma disease in oil palm. Molecules, 24(13).

Mittal, D., Kaur, G., Singh, P., Yadav, K., & Ali, S. A. (2020). Nanoparticle-based sustainable agriculture and food science: recent advances and future Outlook. Frontiers in Nanotechnology.

Mohd Ghazi, R., Nik Yusoff, N. R., Abdul Halim, N. S., Wahab, I. R. A., Ab Latif, N., Hasmoni, S. H., Ahmad Zaini, M. A., & Zakaria, Z. A. (2023). Health effects of herbicides and its current removal strategies. Bioengineered, 14(1), 2259526. https://doi.org/10.1080/21655979.2023.2259526.

Motta, F. L., Melo, B. A. G., & Santana, M. H. A. (2016). Deprotonation and protonation of humic acids as a strategy for the technological development of pH-responsive nanoparticles with fungicidal potential. New Biotechnology, 33(6), 773780. https://doi.org/10.1016/j.nbt.2016.07.003.

Murphy, D. J., Goggin, K., & Paterson, R. R. M. (2021). Oil palm in the 2020s and beyond: challenges and solutions. CABI Agriculture and Bioscience. https://doi.org/10.1186/s43170-021-00058-3.

Nur-Rashyeda, R., Idris, A., Sundram, S., Zainol-Hilmi, N. H., & Ming, S. C. (2023). A field evaluation on fungicides application to control upper stem rot (USR) disease in oil palm caused by ganoderma spp. Journal of Oil Palm Research, 35(2), 320329. https://doi.org/10.21894/jopr.2022.0037.

Ons, L., Bylemans, D., Thevissen, K., & Cammue, B. P. A. (2020). Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms, 8(12). https://doi.org/10.3390/microorganisms8121930.

Ons, L., Bylemans, D., Thevissen, K., & Cammue, B. P. A. (2020). Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms, 8(12), 1930. https://www.mdpi.com/2076-2607/8/12/1930.

Paterson, R. R. M. (2019). Ganoderma boninense disease of oil palm to significantly reduce production after 2050 in Sumatra if projected climate change occurs. Microorganisms, 7(1), 24. https://www.mdpi.com/2076-2607/7/1/24.

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8.

Periakaruppan, R., Palanimuthu, V., Abed, S. A., & Danaraj, J. (2022). New perception about the use of nanofungicides in sustainable agriculture practices. Arch Microbiol, 205(1), 4. https://doi.org/10.1007/s00203-022-03324-8.

Periakaruppan, R., Palanimuthu, V., Abed, S. A., & Danaraj, J. (2022). New perception about the use of nanofungicides in sustainable agriculture practices. Archives of Microbiology, 205(1), 4. https://doi.org/10.1007/s00203-022-03324-8.

Prasad, K., & Kumar, V. (2014). Nanotechnology in sustainable agriculture: Present concerns and future aspects. African Journal of Biotechnology, 13, 705713. https://doi.org/10.5897/AJBX2013.13554.

Raj, K. P., Raghuraman, S., Sabarees, G., & Solomon, V. R. (2025). State-of-the-art supercritical fluid techniques for nanosponge engineering: An in-depth review of advances and clinical impact. MRS Communications. https://doi.org/10.1557/s43579-025-00768-z

Siddiqui, Y., Surendran, A., Paterson, R. R. M., Ali, A., & Ahmad, K. (2021). Current strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi Journal of Biological Sciences, 28(5), 28402849. https://doi.org/https://doi.org/10.1016/j.sjbs.2021.02.016.

Thind, T. S. (2021). Changing trends in discovery of new fungicides: A perspective. Indian Phytopathology, 74(4), 875883. https://doi.org/10.1007/s42360-021-00411-6.

Ul Haq, I., Sarwar, M. K., Faraz, A., & Latif, M. Z. (2020). Synthetic chemicals: major component of plant disease management. In I. Ul Haq & S. Ijaz (Eds.), Plant Disease Management Strategies for Sustainable Agriculture through Traditional and Modern Approaches (pp. 53-81). Springer International Publishing. https://doi.org/10.1007/978-3-030-35955-3_4.

Ur Rahim, H., Qaswar, M., Uddin, M., Giannini, C., Herrera, M. L., & Rea, G. (2021). Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomaterials (Basel), 11(8). https://doi.org/10.3390/nano11082068.

Ur Rahim, H., Qaswar, M., Uddin, M., Giannini, C., Herrera, M. L., & Rea, G. (2021). Nano-enable materials promoting sustainability and resilience in modern agriculture. Nanomaterials, 11(8), 2068. https://www.mdpi.com/2079-4991/11/8/2068.

Varma, A. K., & Ghosh, S. (2020). Supercritical carbon dioxide: a glimpse from the modern era of green chemistry. In Nanotechnology in the Life Sciences (pp. 75123). https://doi.org/10.1007/978-3-030-44984-1_5.

Worrall, E., Hamid, A., Mody, K., Mitter, N., & Pappu, H. (2018). Nanotechnology for Plant Disease Management. Agronomy, 8, 285. https://doi.org/10.3390/agronomy8120285.

Worrall, E. A., Hamid, A., Mody, K. T., Mitter, N., & Pappu, H. R. (2018). Nanotechnology for plant disease management. Agronomy, 8(12), 285. https://www.mdpi.com/2073-4395/8/12/285.

Wu, P. H., Chang, H. X., & Shen, Y. M. (2023). Effects of synthetic and environmentally friendly fungicides on powdery mildew management and the phyllosphere microbiome of cucumber. PLoS One, 18(3), e0282809. https://doi.org/10.1371/journal.pone.0282809.

Xu, Z. P. (2022). Material nanotechnology is sustaining modern agriculture. ACS Agricultural Science & Technology, 2(2), 232239. https://doi.org/10.1021/acsagscitech.1c00204.

Yadav, N. (2017). The effect of ph and high-pressure homogenization on droplet size. International Journal of Engineering Materials and Manufacture, 2(4), 110122. https://doi.org/10.26776/ijemm.02.04.2017.05.

Yousefzadeh, H., Akgün, I. S., Barim, S. B., Sari, T. B., Eris, G., Uzunlar, E., Bozbag, S. E., & Erkey, C. (2022). Supercritical fluid reactive deposition: A process intensification technique for synthesis of nanostructured materials. Chemical Engineering and Processing - Process Intensification, 176, Article 108934. https://doi.org/10.1016/j.cep.2022.108934.

Zarena, A. S., & Sankar, K. U. (2011). Design of submicron and nanoparticle delivery systems using supercritical carbon dioxide-mediated processes: An overview. Therapeutic Delivery, 2(2), 259277. https://doi.org/10.4155/tde.10.82

Zhou, H., Qin, D., Vu, G., & McClements, D. J. (2023). Impact of operating parameters on the production of nanoemulsions using a high-pressure homogenizer with flow pattern and back pressure control. Colloids and Interfaces, 7(1), Article 21. https://doi.org/10.3390/colloids7010021.

Downloads

Published

2025-11-27

How to Cite

Mohd Faisal, M. A., Kamarul’Zaman , A. I., Mohamad Yusof, M. S., Othman, M. H. D., Alias, H., Shamjuddin, A., … Rusli, M. H. (2025). Recent Developments in Synthesis of Nanomaterial for Agriculture: The Role of Supercritical Fluid Technology. Journal of Applied Membrane Science & Technology, 29(3), 305–327. https://doi.org/10.11113/jamst.v29n3.331

Issue

Section

Articles