Efficient Adsorptive Removal of Methylene Blue Using Acid- and Alkali-Modified Clinoptilolite–Alginate Beads: High-Capacity Monolayer Adsorbents for Wastewater Treatment and Potential Membrane Applications

Authors

  • Nur Fatin Atikah Abdul Mutalib Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
  • Dauren Kulbatyrova Non-profit JSC, Atyrau Oil and Gas University named after S. Utebayev, Atyrau, Kazakhstan
  • Assylbek Kanbetova Non-profit JSC, Atyrau Oil and Gas University named after S. Utebayev, Atyrau, Kazakhstan
  • Temirkhanova Gulden Yerlanovna Non-profit JSC, Atyrau Oil and Gas University named after S. Utebayev, Atyrau, Kazakhstan
  • Azat Seitkhan Laboratory of Engineering Profile, Satbayev University, 22 Satbayev Str., Almaty, Kazakhstan
  • Muhammad Bisyrul Hafi Othman Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
  • Norliyana Mohd Salleh Academic Research Management, Group Technology and Commercialisation, PETRONAS Research Sdn Bhd, 43000 Bandar Baru Bangi, Selangor, Malaysia
  • Siti Khadijah Hubadillah School of Technology Management and Logistics, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia
  • Mohd Riduan Jamalludin Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Kampus Alam UniMAP, Pauh Putra, 02600 Arau, Perlis, Malaysia
  • Mohd Ridhwan Adam School of Chemical Sciences, Universiti Sains Malaysia, Penang

DOI:

https://doi.org/10.11113/jamst.v29n3.328

Keywords:

Natural zeolite clinoptilolite, adsorption, methylene blue, isotherm, alginate beads

Abstract

Methylene blue (MB) is a hazardous pollutant with severe impacts on human health and marine ecosystems. To solve these issues, this work investigates the removal of MB from wastewater using sodium alginate beads embedded with natural zeolite clinoptilolite (NZC) modified with HCl and NaOH. To comprehend the changes in NZC physicochemical properties, it was modified with different concentrations of HCl and NaOH (0.5, 1.0, 3.0, and 5.0 M) and extensively characterized using Fourier-transform infrared spectroscopy (FTIR-ATR), and nitrogen adsorption analysis. Both HCl-NZC and NaOH-NZC beads achieved 100% MB removal efficiency, with maximum adsorption capacities of 45.80 mg/g and 45.09 mg/g, respectively. The adsorption process followed the Langmuir isotherm model with high correlation value (R²) of 0.9952 (HCl-NZC) and 0.9907 (NaOH-NZC), indicating monolayer adsorption on a homogeneous surface. This study serves as a preliminary investigation into the adsorption behavior of acid- and base-modified NZC encapsulated in alginate beads for MB removal. The findings demonstrate that the modified beads exhibit strong adsorption capacity and stability, suggesting their potential application as fillers or active components in future zeolite-based composite membrane systems for efficient dye removal.

References

Al-Tohamy, R., Ali, S. S., Li, F., Okasha, K. M., Mahmoud, Y. A.-G., Elsamahy, T., Jiao, H., Fu, Y., & Sun, J. (2022). A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicology and Environmental Safety, 231, 113160. https://doi.org/10.1016/j.ecoenv.2021.113160.

Khan, I., Saeed, K., Zekker, I., Zhang, B., Hendi, A. H., Ahmad, A., Ahmad, S., Zada, N., Ahmad, H., & Shah, L. A. (2022). Review on methylene blue: Its properties, uses, toxicity and photodegradation. Water, 14(2), 242. https://doi.org/10.3390/w14020242.

Mohammed, M., Shitu, A., & Ibrahim, A. (2014). Removal of methylene blue using low cost adsorbent: a review. Research Journal of Chemical Sciences, 4(1), 91102. https://www.researchgate.net/publication/285818165.

Adeyemo, A. A., Adeoye, I. O., & Bello, O. S. (2017). Adsorption of dyes using different types of clay: a review. Applied Water Science, 7, 543568. https://doi.org/10.1007/s13201-015-0322-y.

Mahmodi, G., Zarrintaj, P., Taghizadeh, A., Taghizadeh, M., Manouchehri, S., Dangwal, S., Ronte, A., Ganjali, M. R., Ramsey, J. D., & Kim, S.-J. (2020). From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan. Carbohydrate Research, 489, 107930. https://doi.org/10.1016/j.carres.2020.107930.

Rammal, J., Daou, A., Badan, D., Baki, Z. A., Darwich, S., Rammal, W., & Hijazi, A. (2025). Comparative analysis of natural and synthetic materials for wastewater treatment: plant powders, activated carbon, biochar, zeolite, and nanomaterials. Journal of Chemical Reviews, 7(4), 566590. https://doi.org/10.48309/jcr.2025.511327.1421.

Mutalib, N. F. A. A., Seitkhan, A., Othman, M. B. H., Ramle, A. Q., Salleh, N. M., Othman, M. H. D., Hubadillah, S. K., Jamalludin, M. R., Yusof, N. N., & Adam, M. R. (2025a). Acid-activated natural zeolite clinoptilolite functionalized with curcumin for superior methylene blue adsorption: insights into optimization, characterization, and adsorption mechanisms. Pure and Applied Chemistry, 97(8), 841863. https://doi.org/10.1515/pac-2024-0280.

Abatal, M., Córdova Quiroz, A. V., Olguín, M. T., Vázquez-Olmos, A. R., Vargas, J., Anguebes-Franseschi, F., & Giácoman-Vallejos, G. (2019). Sorption of Pb (II) from aqueous solutions by acid-modified clinoptilolite-rich tuffs with different Si/Al ratios. Applied Sciences, 9(12), 2415. https://doi.org/10.3390/app9122415.

Ghomashi, P., Charkhi, A., Kazemeini, M., & Yousefi, T. (2020). Removal of fluoride from wastewater by natural and modified nano clinoptilolite zeolite. Journal of Water and Environmental Nanotechnology, 5(3), 270282. https://doi.org/10.22090/jwent.2020.03.007.

Bogomazova, E., Demchuk, V., Kalinichenko, B., & Rozhdestvina, V. (2019). Investigation of Chemically Modified Zeolitic Raw-Material from the Amur Region by IR Spectroscopy. Glass and Ceramics, 75, 370371. https://doi.org/10.1007/s10717-019-00087-5.

Cychosz, K. A., & Thommes, M. (2018). Progress in the physisorption characterization of nanoporous gas storage materials. Engineering, 4(4), 559566. https://doi.org/10.1016/j.eng.2018.06.001.

Keluo, C., Zhang, T., Xiaohui, C., Yingjie, H., & Liang, X. (2018). Model construction of micro-pores in shale: A case study of Silurian Longmaxi Formation shale in Dianqianbei area, SW China. Petroleum Exploration and Development, 45(3), 412421. https://doi.org/10.1016/S1876-3804(18)30046-6.

Choi, H.-J., Yu, S.-W., & Kim, K. H. (2016). Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions. Journal of The Taiwan Institute of Chemical Engineers, 63, 482489. https://doi.org/10.1016/j.jtice.2016.03.005.

Wang, X., Ozdemir, O., Hampton, M. A., Nguyen, A. V., & Do, D. D. (2012). The effect of zeolite treatment by acids on sodium adsorption ratio of coal seam gas water. Water Research, 46(16), 52475254. https://doi.org/10.1016/j.watres.2012.07.006.

Hor, K. Y., Chee, J. M. C., Chong, M. N., Jin, B., Saint, C., Poh, P. E., & Aryal, R. (2016). Evaluation of physicochemical methods in enhancing the adsorption performance of natural zeolite as low-cost adsorbent of methylene blue dye from wastewater. Journal of Cleaner Production, 118, 197209. https://doi.org/10.1016/j.jclepro.2016.01.056.

Burris, L. E., & Juenger, M. C. (2016). The effect of acid treatment on the reactivity of natural zeolites used as supplementary cementitious materials. Cement and Concrete Research, 79, 185193. https://doi.org/10.1016/j.cemconres.2015.08.007.

Silva, M., Lecus, A., Lin, Y., & Corrao, J. (2019). Tailoring natural zeolites by acid treatments. Journal of Materials Science and Chemical Engineering, 7(2), 2637. https://doi.org/10.4236/msce.2019.72003.

Abdulkareem, S., Muzenda, E., Afolabi, A., & Kabuba, J. (2013). Treatment of clinoptilolite as an adsorbent for the removal of copper ion from synthetic wastewater solution. Arabian Journal for Science and Engineering, 38(9), 22632272. https://doi.org/10.1007/s13369-012-0505-x.

Panuccio, M. R., Sorgonà, A., Rizzo, M., & Cacco, G. (2009). Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies. Journal of Environmental Management, 90(1), 364374. https://doi.org/10.1016/j.jenvman.2007.10.005.

Ates, A. (2018). Effect of alkali-treatment on the characteristics of natural zeolites with different compositions. Journal of Colloid and Interface Science, 523, 266281. https://doi.org/10.1016/j.jcis.2018.03.115.

Korichi, S., Elias, A., Mefti, A., & Bensmaili, A. (2012). The effect of microwave irradiation and conventional acid activation on the textural properties of smectite: Comparative study. Applied Clay Science, 59, 7683. https://doi.org/10.1016/j.clay.2012.01.020.

Mutalib, N. F. A. A., Seitkhan, A., Othman, M. B. H., Ramle, A. Q., Salleh, N. M., Othman, M. H. D., Hubadillah, S. K., Jamalludin, M. R., Yusof, N. N., & Adam, M. R. (2025b). Revolutionizing Dye Removal in Wastewater: An Optimization Study of Curcumin-Functionalized Zeolite Beads for Methylene Blue Adsorption. Surfaces and Interfaces, 72, 107434. https://doi.org/10.1016/j.surfin.2025.107434.

Sahu, S., Pahi, S., Tripathy, S., Singh, S. K., Behera, A., Sahu, U. K., & Patel, R. K. (2020). Adsorption of methylene blue on chemically modified lychee seed biochar: Dynamic, equilibrium, and thermodynamic study. Journal of Molecular Liquids, 315, 113743. https://doi.org/10.1016/j.molliq.2020.113743.

Shirani, B., & Eic, M. (2017). Investigation of multi-component liquid adsorption of alkylaromatics in NaX zeolite using novel gas chromatographic headspace techniques. Microporous and Mesoporous Materials, 239, 342353. https://doi.org/10.1016/j.micromeso.2016.10.022.

Derakhshan, Z., Baghapour, M. A., Ranjbar, M., & Faramarzian, M. (2013). Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: kinetics and equilibrium studies. Health Scope, 2(3), 136144. https://www.sid.ir/paper/330349/en.

26. Al-Aoh, H. A., Mihaina, I. A., Alsharif, M. A., Darwish, A., Rashad, M., Mustafa, S. K., Aljohani, M. M., Al-Duais, M. A., & Al-Shehri, H. (2020). Removal of methylene blue from synthetic wastewater by the selected metallic oxides nanoparticles adsorbent: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Communications, 207(12), 17191735. https://doi.org/10.1080/00986445.2019.1680366.

Kumar, K. V., Ramamurthi, V., & Sivanesan, S. (2005). Modeling the mechanism involved during the sorption of methylene blue onto fly ash. Journal of Colloid and Interface Science, 284(1), 1421. https://doi.org/10.1016/j.jcis.2004.09.063.

Wang, S., Boyjoo, Y., & Choueib, A. (2005). A comparative study of dye removal using fly ash treated by different methods. Chemosphere, 60(10), 14011407. https://doi.org/10.1016/j.chemosphere.2005.01.091.

Mouni, L., Belkhiri, L., Bollinger, J.-C., Bouzaza, A., Assadi, A., Tirri, A., Dahmoune, F., Madani, K., & Remini, H. (2018). Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Applied Clay Science, 153, 3845. https://doi.org/10.1016/j.clay.2017.11.034.

Downloads

Published

2025-11-27

How to Cite

Abdul Mutalib, N. F. A., Kulbatyrova, D., Kanbetova, A., Yerlanovna, T. G., Seitkhan, A., Othman, M. B. H., … Adam, M. R. (2025). Efficient Adsorptive Removal of Methylene Blue Using Acid- and Alkali-Modified Clinoptilolite–Alginate Beads: High-Capacity Monolayer Adsorbents for Wastewater Treatment and Potential Membrane Applications. Journal of Applied Membrane Science & Technology, 29(3), 291–303. https://doi.org/10.11113/jamst.v29n3.328

Issue

Section

Articles