Effect of Hot Pressing Parameters on the Performance of Graphene Oxide Speek Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cell Application

Authors

  • Kenny Looi Soon Ken ᵃSchool of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • J. Jaafar ᵃSchool of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. S. Suhaimin ᵃSchool of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jamst.v29n2.320

Keywords:

Proton exchange membrane fuel cell (PEMFC), polymer electrolyte membrane (PEM), sulfonated poly(ether ether ketone) (SPEEK), membrane electrode assembly (MEA), graphene oxide (GO), hot-press parameter

Abstract

Fuel cells have garnered significant research attention over the past decades due to their versatility across portable, transportation, and stationary applications. Among various types, the Proton Exchange Membrane Fuel Cell (PEMFC) stands out as the most promising due to its ability to generate clean energy using hydrogen and oxygen without carbon dioxide emissions. Nafion, the commercial proton-conducting membrane used in PEMFCs, offers excellent proton conductivity along with high chemical and thermal stability. However, its high cost and limited operational temperature range (up to 80 °C) poses significant challenges for practical applications. Therefore, this study explores a cost-effective alternative nanocomposite membrane based on sulfonated polyether ether ketone (SPEEK) incorporated with graphene oxide (GO) as a carbonaceous filler. GO was synthesized via a modified Hummer’s method and integrated into the SPEEK matrix. The resulting nanocomposite membrane was characterized using Scanning Electron Microscopy (SEM) for morphological analysis and Fourier Transform Infrared (FTIR) spectroscopy to identify functional groups. The Membrane Electrode Assembly (MEA) was optimized using hot-pressing at 110 °C under 5 tons for 4 minutes, achieving a peak power output of 184.02 mW. The results demonstrate that the inclusion of GO enhances the performance of the PEM, positioning GO-SPEEK as a promising and cost-effective substitute for Nafion in PEMFC applications.

References

Chen, D., Zhou, Z., Liu, H., Gao, Y., Han, D., Wang, Y., & Zhang, J. (2022). Proton exchange membrane fuel cell stack consistency: Evaluation methods, influencing factors, membrane electrode assembly parameters and improvement measures. Energy Conversion and Management, 261, 115651. https://doi.org/10.1016/j.enconman.2022.115651.

Sharaf, O. Z., & Orhan, M. F. (2014). An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 32, 810–853. https://doi.org/10.1016/j.rser.2014.01.012.

Ahmad, S., Nawaz, T., Ali, A., Orhan, M. F., Samreen, A., & Kannan, A. M. (2022). An overview of proton exchange membranes for fuel cells: Materials and manufacturing. International Journal of Hydrogen Energy, 23(4), 113–121. https://doi.org/10.1016/j.ijhydene.2022.04.099.

Majlan, E. H., Rohendi, D., Daud, W. R. W., Husaini, T., & Haque, M. A. (2018). Electrode for proton exchange membrane fuel cells: A review. Renewable and Sustainable Energy Reviews, 89, 117–134. https://doi.org/10.1016/j.rser.2018.03.007.

Liu, Q., Lan, F., Chen, J., Zeng, C., & Wang, J. (2022). A review of proton exchange membrane fuel cell water management: Membrane electrode assembly. Journal of Power Sources, 517, 230723. https://doi.org/10.1016/j.jpowsour.2021.230723.

Xing, P., Robertson, G. P., Guiver, M. D., Mikhailenko, S. D., Wang, K., & Kaliaguine, S. (2004). Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. Journal of Membrane Science, 229(1–2), 95–106. https://doi.org/10.1016/j.memsci.2003.09.019.

Elwan, H. A., Mamlouk, M., & Scott, K. (2021). A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells. Journal of Power Sources, 484, 229197. https://doi.org/10.1016/j.jpowsour.2020.229197.

Wei, P., Zhang, C., Zhang, M., Chen, H., Li, X., Liu, H., & Xie, G. (2022). Sandwich-structure PI/SPEEK/PI proton exchange membrane developed for achieving the high durability on excellent proton conductivity and stability. Journal of Membrane Science, 644, 120116. https://doi.org/10.1016/j.memsci.2021.120116.

Suhaimin, N. S., Zulkifli, N. A., Kamarudin, S. K., Masdar, M. S., & Rosli, R. E. (2022). The evolution of oxygen-functional groups of graphene oxide as a function of oxidation degree. Materials Chemistry and Physics, 278, 125629. https://doi.org/10.1016/j.matchemphys.2021.125629.

Lin, L. S., Bin-Tay, W., Aslam, Z., Westwood, A. V. K., & Brydson, R. (2017). Determination of the lateral size and thickness of solution-processed graphene flakes. Journal of Physics: Conference Series, 902(1), 012026. https://doi.org/10.1088/1742-6596/902/1/012026.

Raduwan, N. F., Shaari, N., Kamarudin, S. K., Masdar, M. S., & Yunus, R. M. (2022). An overview of nanomaterials in fuel cells: Synthesis method and application. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.03.035.

Yagizatli, Y., Sahin, A., & Ar, I. (2022). Effect of thermal crosslinking process on membrane structure and PEM fuel cell applications performed with SPEEK-PVA blend membranes. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.04.183.

Muniyalakshmi, M., Sethuraman, K., & Silambarasan, D. (2020). Synthesis and characterization of graphene oxide nanosheets. Materials Today: Proceedings, 21, 408–410. https://doi.org/10.1016/j.matpr.2019.06.375.

Suhaimin, N. S., Ismail, I., Yusoff, M. M., Harun, Z., Shaari, N., & Othman, N. (2020). Nanocomposite membrane by incorporating graphene oxide in sulfonated polyether ether ketone for direct methanol fuel cell. Materials Today: Proceedings, 46, 2084–2091. https://doi.org/10.1016/j.matpr.2021.03.614.

Yin, Y., Wang, H., Cao, L., Li, Z., Li, Z., & Gang, M. (2016). Sulfonated poly(ether ether ketone)-based hybrid membranes containing graphene oxide with acid-base pairs for direct methanol fuel cells. Electrochimica Acta, 203, 178–188. https://doi.org/10.1016/j.electacta.2016.04.004.

Therdthianwong, A., Manomayidthikarn, P., & Therdthianwong, S. (2007). Investigation of membrane electrode assembly (MEA) hot-pressing parameters for proton exchange membrane fuel cell. Energy, 32(12), 2401–2411. https://doi.org/10.1016/j.energy.2007.07.005.

Yazdanpour, M., Esmaeilifar, A., & Rowshanzamir, S. (2012). Effects of hot pressing conditions on the performance of Nafion membranes coated by ink-jet printing of Pt/MWCNTs electrocatalyst for PEMFCs. International Journal of Hydrogen Energy, 37(15), 11290–11298. https://doi.org/10.1016/j.ijhydene.2012.04.139.

Okur, O., Iyigün Karadağ, Ç., Boyaci San, F. G., Okumuş, E., & Behmenyar, G. (2013). Optimization of parameters for hot-pressing manufacture of membrane electrode assembly for PEM (polymer electrolyte membrane fuel cells) fuel cell. Energy, 57, 574–580. https://doi.org/10.1016/j.energy.2013.05.001.

Bhosale, A. C., Ghosh, P. C., & Assaud, L. (2020). Preparation methods of membrane electrode assemblies for proton exchange membrane fuel cells and unitized regenerative fuel cells: A review. Renewable and Sustainable Energy Reviews, 133, 110286. https://doi.org/10.1016/j.rser.2020.110286.

039. Zhang, J., Yin, G. P., Wang, Z. B., Lai, Q. Z., & Cai, K. D. (2007). Effects of hot pressing conditions on the performances of MEAs for direct methanol fuel cells. Journal of Power Sources, 165(1), 73–81. https://doi.org/10.1016/j.jpowsour.2006.12.039.

Hasran, U. A., Kamarudin, S. K., Masdar, M. S., Daud, W. R. W., & Yaakob, Z. (2013). Optimization of hot pressing parameters in membrane electrode assembly fabrication by response surface method. International Journal of Hydrogen Energy, 38(22), 9484–9493. https://doi.org/10.1016/j.ijhydene.2012.12.054.

Thuyavan, L., Kumar, S. M., Manikandan, V., Ahamed, A. J., & Anantharaj, S. (2021). Polyaniline decorated graphene oxide on sulfonated poly(ether ether ketone) membrane for direct methanol fuel cells application. Polymers for Advanced Technologies, 32(9), 3630–3644. https://doi.org/10.1002/pat.5491.

Gokulakrishnan, S. A., Kumar, V., Arthanareeswaran, G., Ismail, A. F., & Jaafar, J. (2022). Thermally stable nanoclay and functionalized graphene oxide integrated SPEEK nanocomposite membranes for direct methanol fuel cell application. Fuel, 329, 125407. https://doi.org/10.1016/j.fuel.2022.125407

Ahmad, S., Nawaz, T., Ali, A., Orhan, M. F., Samreen, A., & Kannan, A. M. (2022). An overview of proton exchange membranes for fuel cells: Materials and manufacturing. International Journal of Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.04.099.

Rosli, R. E., Husaini, T., Najmi, M. R., Daud, W. R. W., Zainoodin, A. M., Husaini, M., & Rosli, M. I. (2017). A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy, 42(14), 9293–9314. https://doi.org/10.1016/j.ijhydene.2016.06.211

Adetayo, A., & Runsewe, D. (2019). Synthesis and fabrication of graphene and graphene oxide: A review. Open Journal of Composite Materials, 9(2), 207–229. https://doi.org/10.4236/ojcm.2019.92012.

Sun, L. (2019). Structure and synthesis of graphene oxide. Chinese Journal of Chemical Engineering, 27(10), 2431–2437. https://doi.org/10.1016/j.cjche.2019.05.003.

Pei, S., Wei, Q., Huang, K., Cheng, H. M., & Ren, W. (2018). Green synthesis of graphene oxide by seconds timescale water electrolytic oxidation. Nature Communications, 9(1), Article 145. https://doi.org/10.1038/s41467-017-02479-z.

Aksoy, C., & Anakli, D. (2019). Synthesis of graphene oxide through ultrasonic assisted electrochemical exfoliation. Open Chemistry, 17(1), 581–586. https://doi.org/10.1515/chem-2019-0062.

Singh, R. K., Kumar, R., & Singh, D. P. (2016). Graphene oxide: Strategies for synthesis, reduction and frontier applications. RSC Advances, 6(69), 64993–65011. https://doi.org/10.1039/C6RA07626B.

Chasanah, U., Trisunaryanti, W., Triyono, Oktaviano, H. S., & Fatmawati, D. A. (2021). The performance of green synthesis of graphene oxide prepared by modified Hummers method with oxidation time variation. Rasayan Journal of Chemistry, 14(3), 2017–2023. https://doi.org/10.31788/RJC.2021.1436042.

Suhaimin, N. S., et al. (2024). Novel siliceous mesoporous phosphotungstic acid embedded chitosan/LSMM polymer membrane for direct methanol fuel cells. Journal of Electroanalytical Chemistry, 968, 118510. https://doi.org/10.1016/j.jelechem.2024.118510.

Hasran, U. A., et al. (2013). Optimization of hot pressing parameters in membrane electrode assembly fabrication by response surface method. International Journal of Hydrogen Energy, 38(22), 9484–9493. https://doi.org/10.1016/j.ijhydene.2012.12.054.

Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481–53491. https://doi.org/10.1039/C7RA10484G.

Suhaimin, N. S., et al. (2017). Methanol permeability and properties of polymer electrolyte membrane based on graphene oxide-sulfonated (polyether ether) ketone. Malaysian Journal of Analytical Sciences, 21(2), 435–444. https://doi.org/10.17576/mjas-2017-2102-19.

Feng, M., Huang, Y., Cheng, Y., Liu, J., & Liu, X. (2020). Rational design of sulfonated poly(ether ether ketone) grafted graphene oxide-based composites for proton exchange membranes with enhanced performance. Journal of Membrane Science, 598, 117676. https://doi.org/10.1016/j.memsci.2019.117676.

Bhattacharyya, S., Mondal, A., Halder, D., Mondal, N. K., Das, B., & Roy, P. (2018). Comparative assessment on the removal of ranitidine and prednisolone present in solution using graphene oxide (GO) nanoplatelets. Desalination and Water Treatment, 132, 333–344. https://doi.org/10.5004/dwt.2018.23170.

He, X., Zhou, Z., Han, Z., Zeng, Y., Chen, X., & Su, J. (2019). Mechanism of controlled release of vancomycin from crumpled graphene oxides. ACS Omega, 4(7), 12439–12447. https://doi.org/10.1021/acsomega.9b00873.

Ramli, W. (2022, April 3). Water permeability study of Nafion 117 membrane after undergoing hot press. Academia.edu. Retrieved July 28, 2025, from https://www.academia.edu/75367341/Water_permeability_study_of_nafion_117_membrane_after_undergoing_hot_press.

Krishna, A., Lindhoud, S., & de Vos, W. M. (2021). Hot-pressed polyelectrolyte complexes as novel alkaline stable monovalent-ion selective anion exchange membranes. Journal of Colloid and Interface Science, 593, 11–20. https://doi.org/10.1016/j.jcis.2021.02.077.

Vinothkannan, M., Kannan, R., Kim, A. R., Kumar, G. G., Nahm, K. S., & Yoo, D. J. (2016). Facile enhancement in proton conductivity of sulfonated poly(ether ether ketone) using functionalized graphene oxide—Synthesis, characterization, and application towards proton exchange membrane fuel cells. Colloid and Polymer Science, 294(7), 1197–1207. https://doi.org/10.1007/s00396-016-3877-8.

Feng, M., Huang, Y., Cheng, Y., Liu, J., & Liu, X. (2018). Rational design of sulfonated poly(ether ether ketone) grafted graphene oxide-based composites for proton exchange membranes with enhanced performance. Polymer, 144, 7–17. https://doi.org/10.1016/j.polymer.2018.04.037.

Kumar, R., Mamlouk, M., & Scott, K. (2014). Sulfonated polyether ether ketone-sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells. RSC Advances, 4(2), 617–623. https://doi.org/10.1039/C3RA42390E.

Gokulakrishnan, S. A., Kumar, V., Arthanareeswaran, G., Ismail, A. F., & Jaafar, J. (2022). Thermally stable nanoclay and functionalized graphene oxide integrated SPEEK nanocomposite membranes for direct methanol fuel cell application. Fuel, 329, 125407. https://doi.org/10.1016/j.fuel.2022.125407.

Downloads

Published

2025-08-01

How to Cite

Looi Soon Ken, K., Jaafar, J., & Suhaimin, N. S. (2025). Effect of Hot Pressing Parameters on the Performance of Graphene Oxide Speek Membrane Electrode Assembly for Proton Exchange Membrane Fuel Cell Application. Journal of Applied Membrane Science & Technology, 29(2), 193–208. https://doi.org/10.11113/jamst.v29n2.320

Issue

Section

Articles