Investigation of Carbon Dioxide and Nitrogen Gases Permeability through PEBAX 1657/PEG/graphene Oxide Nanoparticle Mixed Matrix Membrane
DOI:
https://doi.org/10.11113/jamst.v29n3.319Keywords:
Mixed matrix membrane, PEBAX, Graphene oxide nanoparticle, Permeability, SelectivityAbstract
This study investigated gas permeation of neat and blend polyether block amide (PEBAX) 1657 membranes. Polyethylene glycol (PEG) and graphene oxide (GO) were added to PEBAX membrane matrix at different concentration to study their effects on the morphology, permeability and selectivity of the membranes. The prepared membranes were characterized by Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). The permeabilities of pure gases CO2 and N2 were carried out using a constant pressure-variable volume method. The influence of PEBAX 1657 membranes with different weight fractions of PEG and GO on the gas permeation performance were studied. The modified membrane with PEBAX/PEG (40 wt.%) displayed the optimum gas separation performance with a CO2 permeability of 103.9 Barrer and selectivity of 56.3 for the CO2/N2 gas pair at 10 bar and room temperature. The permeability of this membrane was twofold compared to the pristine PEBAX, under the same temperature and pressure conditions, showing promising prospects for CO2 capture.
References
Baker, R. W. (2012). Membrane technology and applications (3rd ed.). John Wiley and Sons Ltd.
Huang, T. H., Feng, F., & Chung, T. S. (2025). Pebax®1657-based membranes with organic gatekeepers for effective CO₂ capture. Chemical Engineering Journal, 513, 162596. https://doi.org/10.1016/j.cej.2025.162596.
Liang, C. Z., Feng, F., Wu, J., & Chung, T. S. (2025). Elevating gas separation performance of Pebax-based membranes by blending with a PDMS–PEO block copolymer for CO₂ capture and separation. Journal of Membrane Science, 716, 123528. https://doi.org/10.1016/j.memsci.2024.123528
Yampolskii, Y., & Freeman, B. (2010). Membrane gas separation. John Wiley and Sons Ltd.
Ghadimi, A., Amirilargani, M., Mohammadi, T., Kasiri, N., & Sadatnia, B. (2014). Preparation of alloyed poly(ether block amide)/poly(ethylene glycol diacrylate) membranes for separation of CO₂/N₂. Journal of Membrane Science, 458, 14–26. https://doi.org/10.1016/j.memsci.2014.01.048.
Reijerkerk, S. R., Knoef, M. H., Nijmeijer, K., & Wessling, M. (2010). Poly(ethylene glycol) and poly(dimethyl siloxane): Combining their advantages into efficient CO₂ gas separation membranes. Journal of Membrane Science, 352(1–2), 126–135. https://doi.org/10.1016/j.memsci.2010.02.008
Yave, W., Car, A., & Peinemann, K. V. (2010). Nanostructured membrane material designed for carbon dioxide separation. Journal of Membrane Science, 350(1–2), 124–129. https://doi.org/10.1016/j.memsci.2009.12.019
Wang, S., Liu, Y., Huang, S., et al. (2014). Pebax-PEG-MWCNT hybrid membranes with enhanced CO₂ capture properties. Journal of Membrane Science, 460, 62–70. https://doi.org/10.1016/j.memsci.2014.02.036.
Zhao, D., Ren, J., Qiu, Y., et al. (2015). Effect of graphene oxide on the behavior of poly(amide-6-b-ethylene oxide)/graphene oxide mixed matrix membranes in the permeation process. Journal of Applied Polymer Science, 132(41), 42624. https://doi.org/10.1002/app.42624.
Li, X., Cheng, Y., Zhang, H., et al. (2015). Efficient CO₂ capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes. ACS Applied Materials & Interfaces, 7, 5528–5537. https://doi.org/10.1021/acsami.5b00106.
Bernardo, P., Jansen, J. C., Bazzarelli, F., et al. (2012). Gas transport properties of Pebax/room-temperature ionic liquid gel membranes. Separation and Purification Technology, 97, 73–82. https://doi.org/10.1016/j.seppur.2012.02.041.
Ferrari, H. Z., Bernard, F., Santos, L., et al. (2024). Enhancing CO₂/N₂ and CO₂/CH₄ separation in mixed matrix membrane: A comprehensive study on Pebax®1657 with SSMMP/IL for improved efficiency. Polymer Engineering and Science, 64(6), 2875–2893. https://doi.org/10.1002/pen.26732.
Hummers, J. W. S., & Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339.
Quana, S., Li, S. W., Xiaoc, Y. C., & Shao, L. (2017). CO₂-selective mixed matrix membranes (MMMs) containing graphene oxide (GO) for enhancing sustainable CO₂ capture. International Journal of Greenhouse Gas Control, 56, 22–29. https://doi.org/10.1016/j.ijggc.2016.11.010
Nafisi, V., & Hagg, M. B. (2014). Development of dual layer ZIF-8/PEBAX-2533 mixed matrix membranes for CO₂ capture. Journal of Membrane Science, 459, 244–255. https://doi.org/10.1016/j.memsci.2014.02.002
Hosseinkhani, A., Safari, P., Omidkhah, M., Ebadi Amooghin, A., & Norouzi, A. M. (2025). A high-efficiency Pebax 1657-based mixed matrix membrane containing molybdenum oxide particles for enhanced CO₂/N₂ separation. International Journal of Environmental Science and Technology, 22, 6847–6862. https://doi.org/10.1007/s13762-025-06391-8.
Rahman, M. M., Filiz, V., Shishatskiy, S., et al. (2013). PEBAX with PEG functionalized POSS as nanocomposite membranes for CO₂ separation. Journal of Membrane Science, 437, 286–297. https://doi.org/10.1016/j.memsci.2013.03.001.
Li, P., Ma, W., Zhong, J., Pan, Y., et al. (2024). Improving the CO₂ permeability and selectivity of Pebax mixed-matrix membranes by constructing an “expressway” using pyrazine-based nitrogen-doped porous carbon. Journal of Environmental Chemical Engineering, 12(4), 113144. https://doi.org/10.1016/j.jece.2024.113144.
Marcano, D. C., Kosynkin, D., Berlin, J. M., et al. (2010). Improved synthesis of graphene oxide. ACS Nano, 4(8), 4806–4814. https://doi.org/10.1021/nn1006368.
Dai, Y., Ruan, X., Yan, Z., et al. (2016). Imidazole functionalized graphene oxide/Pebax mixed matrix membranes for efficient CO₂ capture. Separation and Purification Technology, 166, 171–180. https://doi.org/10.1016/j.seppur.2016.04.038.
Khalilinejad, I., Kargari, A., & Sanaeepur, H. (2017). Preparation and characterization of (Pebax 1657 + silica nanoparticle)/PVC mixed matrix composite membrane for CO₂/N₂ separation. Chemical Papers, 71, 803–818. https://doi.org/10.1007/s11696-016-0084-5.
Mahmoudi, A., Asghari, M., & Zargar, V. (2014). CO₂/CH₄ separation through a novel commercializable three-phase PEBA/PEG/NaX nanocomposite membrane. Journal of Industrial and Engineering Chemistry, 23, 238–242. https://doi.org/10.1016/j.jiec.2014.08.023.
Car, A., Stropnik, C., Yave, W., & Peinemann, K. V. (2008). Pebax®/polyethylene glycol blend thin-film composite membranes for CO₂ separation: Performance with mixed gases. Separation and Purification Technology, 62(1), 110–117. https://doi.org/10.1016/j.seppur.2008.01.001.
Jazebizadeh, M. H., & Khazraei, S. (2017). Investigation of methane and carbon dioxide permeability through PEBAX/PEG/ZnO nanoparticle mixed matrix membrane. Silicon, 9, 775–784. https://doi.org/10.1007/s12633-016-9435-7.
Koenig, S. P. (2013). Graphene membranes: Mechanics, adhesion, and gas separations (Master’s thesis). Mechanical Engineering Graduate Theses & Dissertations, 68. https://scholar.colorado.edu/mcen_gradetds/68.
Mohammed, S. A., Nasir, A. M., Aziz, F., et al. (2019). CO₂/N₂ selectivity enhancement of PEBAX MH 1657/aminated partially reduced graphene oxide mixed matrix composite membrane. Separation and Purification Technology, 223, 142–153. https://doi.org/10.1016/j.seppur.2019.04.061.
Li, X., Ma, L., Zhang, H., et al. (2015). Synergistic effect of combining carbon nanotubes and graphene oxide in mixed matrix membranes for efficient CO₂ separation. Journal of Membrane Science, 479, 1–10. https://doi.org/10.1016/j.memsci.2015.01.014.
Ghadimi, A., Mohammadi, T., & Kasiri, N. (2014). A novel chemical surface modification for fabrication of PEBA/SiO₂ nanocomposite membranes to separate CO₂ from syngas and natural gas streams. Industrial & Engineering Chemistry Research, 53(44), 17476–17486. https://doi.org/10.1021/ie503216p.
Sanaeepur, H., Ahmadi, R., Amooghin, A. E., & Ghanbari, D. (2019). A novel ternary mixed matrix membrane containing glycerol-modified poly(ether-block-amide) (Pebax 1657)/copper nanoparticles for CO₂ separation. Journal of Membrane Science, 573, 234–246. https://doi.org/10.1016/j.memsci.2018.12.012.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.













