Underwater Oleophobicity of MBPP Membrane Modified by TiO₂/PDMS/IPA for Oil/Water Emulsion Separation

Authors

  • Marlisa Salamat Membrane and Nanomaterials Technology Research Laboratory, Nanomaterials Research Centre, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
  • Chel-Ken Chiam Membrane and Nanomaterials Technology Research Laboratory, Nanomaterials Research Centre, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia https://orcid.org/0000-0001-9156-7368
  • Rosalam Sarbatly Membrane and Nanomaterials Technology Research Laboratory, Nanomaterials Research Centre, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

DOI:

https://doi.org/10.11113/jamst.v29n2.314

Keywords:

Underwater oleophobic, meltblown polypropylene, membrane, TiO2 nanoparticles, oil/water separation

Abstract

Meltblowing of polypropylene (PP) without using toxic solvents is a feasible method for mass-producing fibrous membranes for oil/water emulsion separation. However, the oleophilicity of PP can lead to fouling due to significant oil adsorption, and the low integrity of the PP fiber can cause the membrane structural failure during filtration operations. In this work, polydimethylsiloxane (PDMS) and isopropyl alcohol (IPA) are employed to improve the inter-fiber adhesion while maintaining the void structure that allows water permeation. Hydrophilic TiO2 nanoparticles are deposited on the meltblown PP membrane (MBPP) using a suspension dispersion method, transforming the membrane into an underwater oleophobic surface. The results show that the TiO2/PDMS/IPA modified MBPP membrane is oleophilic towards palm oil but oleophobic towards toluene under water. Because of the long chain and high molecular weight of triglycerides in palm oil, they form stronger intermolecular interactions with both the pristine and modified MBPP membrane surfaces. The underwater oil contact angle (UWOCA) of MBPP membrane varies between 5.1 ± 5° and 70.7 ± 6.3° when in contact with palm oil droplets. The UWOCA of toluene droplets increased from 67.4 ± 20.8° to 133.8 ± 18.1° when the TiO2 loading was increased from 0 to 0.2 wt%. The optimal membrane with 0.2 wt% TiO2 nanoparticles achieved the maximum flux at 25040 ± 2403 L/m2 h and the separation efficiency > 99% for the toluene/water emulsion system. During the cyclic test, fouling from toluene adsorption occurred during cycle #3, but the separation efficiency remained greater than 98% after five cycles.

References

Huettel, M. (2022). Oil pollution of beaches. Current Opinion in Chemical Engineering, 36, 100803. Doi: https://doi.org/10.1016/j.coche.2022.100803.

Kuang, C., Chen, J., Wang, J., Qin, R., Fan, J., & Zou, Q. (2023). Effect of wind-wave-current interaction on oil spill in the Yangtze River estuary. Journal of Marine Science and Engineering, 11, 494. Doi: https://doi.org/10.3390/jmse11030494.

Nukapothula, S., Wu, J., Chen, C., & Ali, Y. P. (2021). Potential impact of the extensive oil spill on primary productivity in the Red Sea waters. Continental Shelf Research, 222, 104437. Doi:https://doi.org/10.1016/j.csr.2021.104437.

Ogunbiyi, O., Al-Rewaily, R., Saththasivam, J., Lawler, J., & Liu, Z. (2023). Oil spill management to prevent desalination plant shutdown from the perspectives of offshore cleanup, seawater intake and onshore pretreatment. Desalination, 564, 116780. Doi: https://doi.org/10.1016/j.desal.2023.116780.

Sharma, K., Shah, G., Singhal, K., & Soni, V. (2024). Comprehensive insights into the impact of oil pollution on the environment. Regional Studies in Marine Science, 74, 103516. Doi: https://doi.org/10.1016/j.rsma.2024.103516.

Hussain, A., & Al-Yaari, M. (2021). Development of polymeric membranes for oil/water separation. Membranes, 11, 42. Doi: https://doi.org/10.3390/membranes11010042.

Tai, M. H., Mohan, B. C., & Wang, C. H. (2022). Freeze-casting multicomponent aerogel membrane with controllable asymmetric multilayer configuration for high flux gravity-driven separation of oil-water emulsion. Separation and Purification Technology, 293, 121087. Doi: https://doi.org/10.1016/j.seppur.2022.121087.

Li, Y., Fan, T., Cui, W., Wang, X., Ramakrishna, S., & Long, Y. (2023). Harsh environment-tolerant and robust PTFE@ZIF-8 fibrous membrane for efficient photocatalytic organic pollutants degradation and oil/water separation. Separation and Purification Technology, 306, 122586. Doi: https://doi.org/10.1016/j.seppur.2022.122586.

Xu, M., Peng, W., Ruan, X., Chen, L., Dai, X., & Dai, J. (2023). Eco-friendly fabrication of porphyrin@hyperbranched polyamide-amine@phytic acid/PVDF membrane for superior oil-water separation and dye degradation. Applied Surface Science, 608, 155075. Doi: https://doi.org/10.1016/j.apsusc.2022.155075

Zhou, J. Y., Luo, Z. Y., Yin, M. J., Wang, N., Qin, Z., Lee, K. R., & An, Q. F. (2020). A comprehensive study on phase inversion behaviour of a novel polysulfate membrane for high-performance ultrafiltration applications. Journal of Membrane Science, 610, 118404. Doi:https://doi.org/10.1016/j.memsci.2020.118404.

Tang, Y., Lin, Y., Ma, W., & Wang, X. (2021). A review on microporous polyvinylidene fluoride membranes fabricated via thermally induced phase separation for MF/UF application. Journal of Membrane Science, 639, 119759. Doi:https://doi.org/10.1016/j.memsci.2021.119759.

Bai, Z., Jia, K., Lin, G., Huang, Y., Liu, C., Liu, S., Zhang, S., & Liu, X. (2023). Solvent-nonsolvent regulated nano-functionalization of super-wetting membranes for sustainable oil/water separation. Applied Surface Science, 613, 156085. Doi: https://doi.org/10.1016/j.apsusc.2022.156085.

Sadek, S. A., & Al-Jubouri, S. M. (2023). Structure and performance of polyvinylchloride microfiltration membranes improved by green silicon oxide nanoparticles for oil-in-water emulsion separation. Materials Today Sustainability, 24, 100600. Doi: https://doi.org/10.1016/j.mtsust.2023.100600.

Sarbatly, R., & Chiam, C. K. (2022). An overview of recent progress in nanofiber membranes for oily wastewater treatment. Nanomaterials, 12, 2919. Doi: https://doi.org/10.3390/nano12172919.

Diwan, T., Abudi, Z. N., Al-Furaiji, M. H., & Nijmeijer, A. (2023). A competitive study using electrospinning and phase inversion to prepare polymeric membranes for oil removal. Membranes, 13, 474. Doi: https://doi.org/10.3390/membranes13050474.

Naragund, V. S., & Panda, P. K. (2020). Electrospinning of cellulose acetate nanofiber membrane using methyl ethyl ketone and N, N-Dimethylacetamide as solvents. Materials Chemistry and Physics, 240, 122147. Doi: https://doi.org/10.1016/j.matchemphys.2019.122147.

Askari, A., Nabavi, S. R., & Omrani, A. (2024). Fabrication of PES/PAN electrospun nanofiber membrane incorporated with [EMIM][Ac] ionic liquid for oil/water separation. Journal of Water Process Engineering, 65, 105768. Doi: https://doi.org/10.1016/j.jwpe.2024.105768

Schmidt, J., Usgaonkar, S. S., Kumar, S., Lozano, K., & Ellison, C. J. (2022). Advances in melt blowing process simulations. Industrial & Engineering Chemistry Research, 61, 65–85. Doi: https://doi.org/10.1021/acs.iecr.1c03444.

Hassan, M. A., Yeom, B. Y., Wilkie, A., Pourdeyhimi, B., & Khan, S. A. (2013). Fabrication of nanofiber membranes and their filtration properties. Journal of Membrane Science, 427, 336–344. Doi: https://doi.org/10.1016/j.memsci.2012.09.050.

Ran, F. (2015). Polypropylene membrane. In E. Drioli & L. Giorno (Eds.), Encyclopedia of membranes. Springer. Doi: https://doi.org/10.1007/978-3-642-40872-4_1911-1.

Sun, F., Li, T. T., Zhang, X., Shiu, B. C., Zhang, Y., Ren, H. T., Peng, H. K., Lin, J. H., & Lou, C. W. (2020). In situ growth polydopamine decorated polypropylene melt-blown membrane for highly efficient oil/water separation. Chemosphere, 254, 126873. Doi: https://doi.org/10.1016/j.chemosphere.2020.126873.

Fang, S., Zhang, Z., Yang, H., Wang, G., Gu, L., Xia, L., Zeng, Z., & Zhu, L. (2020). Mussel-inspired hydrophilic modification of polypropylene membrane for oil-in-water emulsion separation. Surface and Coatings Technology, 403, 126375. Doi: https://doi.org/10.1016/j.surfcoat.2020.126375.

Zhang, J., Wang, L., Zhang, H., Long, X., Zheng, Y., Zuo, Y., & Jiao, F. (2022). Biomimetic modified polypropylene membranes based on tea polyphenols for efficient oil/water separation. Progress in Organic Coatings, 164, 106723. Doi:https://doi.org/10.1016/j.porgcoat.2022.106723.

Li, C., Ren, L., Zhang, C., Xu, W., & Liu, X. (2021). TiO₂ coated polypropylene membrane by atomic layer deposition for oil–water mixture separation. Advanced Fiber Materials, 3, 138–146. Doi: https://doi.org/10.1007/s42765-021-00069-9.

Araújo, D. A. G., Pradela-Filho, L. A., Santos, A. L. R., Faria, A. M., Takeuchi, R. M., Karimi-Maleh, H., & Santos, A. L. (2019). Uncured polymethylsiloxane as binder agent for carbon paste electrodes: Application to the quantification of propranolol. Journal of the Brazilian Chemical Society, 30, 1988–1998. Doi: https://doi.org/10.21577/0103-5053.20190117.

Borók, A., Laboda, K., & Bonyár, A. (2021). PDMS bonding technologies for microfluidic applications: A review. Biosensors, 11, 292. Doi: https://doi.org/10.3390/bios11080292.

Prasad, V., Sekar, K., Varghese, S., & Joseph, M. A. (2020). Evaluation of interlaminar fracture toughness and dynamic mechanical properties of nano TiO₂ coated flax fibre epoxy composites. Polymer Testing, 91, 106784. Doi: https://doi.org/10.1016/j.polymertesting.2020.106784.

Yang, J., Cui, J., Xie, A., Dai, J., Li, C., & Yan, Y. (2021). Facile preparation of superhydrophilic/underwater superoleophobic cellulose membrane with CaCO₃ particles for oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608, 125583. Doi: https://doi.org/10.1016/j.colsurfa.2020.125583.

Prabowo, I., Nur Pratama, J., & Chalid, M. (2017). The effect of modified ijuk fibers to crystallinity of polypropylene composite. IOP Conference Series: Materials Science and Engineering, 223, 012020. Doi: https://doi.org/10.1088/1757-899X/223/1/012020.

Krylova, V., & Dukštienė, N. (2013). Synthesis and characterization of Ag₂S layers formed on polypropylene. Journal of Chemistry, 2013, 987879. Doi: https://doi.org/10.1155/2013/987879.

Hamouni, S., Arous, O., Abdessemed, D., Nezzal, G., & Bruggen, V. (2019). Alcohol and alkane organic extraction using pervaporation process. Macromolecular Symposia, 386, 1800247. Doi: https://doi.org/10.1002/masy.201800247.

Praveen, P., Viruthagiri, G., Mugundan, S., & Shanmugam, N. (2014). Structural, optical and morphological analyses of pristine titanium dioxide nanoparticles – Synthesized via sol–gel route. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 622–629. Doi: https://doi.org/10.1016/j.saa.2013.09.037.

Atta, A., & Abdeltwab, E. (2022). Influence of ion irradiation on the surface properties of silver-coated flexible PDMS polymeric films. Brazilian Journal of Physics, 52, 3. Doi: https://doi.org/10.1007/s13538-021-01011-5.

Du, C., Wang, Z., Liu, G., Wang, W., & Yu, D. (2021). One-step electrospinning PVDF/PVP–TiO₂ hydrophilic nanofiber membrane with strong oil–water separation and anti-fouling property. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126790. Doi: https://doi.org/10.1016/j.colsurfa.2021.126790.

Zou, D., Kim, H. W., Jeon, S. M., & Lee, Y. M. (2022). Robust PVDF/PSF hollow-fiber membranes modified with inorganic TiO₂ particles for enhanced oil–water separation. Journal of Membrane Science, 652, 120470. Doi: https://doi.org/10.1016/j.memsci.2022.120470.

Bao, Z., Chen, D., Li, N., Xu, Q., Li, H., He, J., & Lu, J. (2020). Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation. Journal of Membrane Science, 590, 117804. Doi:https://doi.org/10.1016/j.memsci.2019.117804.

Li, J., Wang, Q., Tao, J., Yan, B., & Chen, G. (2020). Experimental and comprehensive evaluation of vegetable oils for biomass tar absorption. ACS Omega, 5, 19579–19588. Doi: https://doi.org/10.1021/acsomega.0c02050.

Pan, Z., Cao, S., Li, J., Du, Z., & Cheng, F. (2019). Anti-fouling TiO₂ nanowires membrane for oil/water separation: Synergetic effects of wettability and pore size. Journal of Membrane Science, 572, 596–606. Doi: https://doi.org/10.1016/j.memsci.2018.11.056.

Han, L., Shen, L., Lin, H., Huang, Z., Xu, Y., Li, R., Li, B., Chen, C., Yu, W., & Teng, J. (2023). 3D printing titanium dioxide–acrylonitrile–butadiene–styrene (TiO₂–ABS) composite membrane for efficient oil/water separation. Chemosphere, 315, 137791. Doi: https://doi.org/10.1016/j.chemosphere.2023.137791.

Zeng, Q., Zhao, D. L., Shen, L., Lin, H., Kong, N., Han, L., Chen, C., Teng, J., Tang, C., & Chun, T. S. (2023). Titanium oxide nanotubes intercalated two-dimensional MXene composite membrane with exceptional antifouling and self-cleaning properties for oil/water separation. Chemical Engineering Journal, 474, 145579. Doi: https://doi.org/10.1016/j.cej.2023.145579.

Downloads

Published

2025-08-01

How to Cite

Salamat, M., Chiam, C.-K., & Sarbatly, R. (2025). Underwater Oleophobicity of MBPP Membrane Modified by TiO₂/PDMS/IPA for Oil/Water Emulsion Separation. Journal of Applied Membrane Science & Technology, 29(2), 141–156. https://doi.org/10.11113/jamst.v29n2.314

Issue

Section

Articles