Effect of Cloisite 15A Clay Dispersion on the Structural Characteristics of PVDF Nanocomposite Membrane

Authors

  • N. M. Mokhtar ᵃFaculty of Civil Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia ᵇBioaromatic Research Centre, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
  • R. Naim Faculty of Chemical and Process Engineering Technology, Universiti Malaysia Pahang, Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia
  • N. H. Ismail Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/jamst.v28n3.304

Keywords:

Polyvinylidene fluoride, clay dispersion, nanocomposite, membrane distillation, dyeing wastewater

Abstract

Recent interest in nanoparticles-reinforced polymer matrices has surged due to their superior properties over virgin polymers. Nevertheless, there remains a gap in research regarding the impact of clay dispersion on polymeric membranes employed in membrane distillation (MD). This study aims to investigate how the dispersion of Cloisite 15A (C15A) clay influences the structure of polyvinylidene fluoride (PVDF) membranes and improves dye removal efficiency. A nanocomposite membrane consisting of polyvinylidene fluoride-Cloisite 15A clay (PVDF-C15A) was prepared using a phase-inversion process. Additionally, a PVDF membrane without clay was prepared as a control. The influence of clay on the crystalline structure of the PVDF membrane was examined by analyzing morphology, porosity, wetting pressure, contact angle, surface roughness, mechanical strength, and thermal stability. X-ray diffraction spectroscopy and transmission electron microscopy were employed to assess the dispersion state of the clay. The fabricated membranes were evaluated in direct contact membrane distillation for treating dyeing solution. To understand the interaction between dye particles and the membranes, zeta potentials of both the control and nanocomposite membranes were measured. The study revealed that the nanocomposite membrane exhibited higher permeate flux compared to the control membrane. This improvement was primarily attributed to the well-dispersed layered silicate within the nanocomposite membrane, which enhanced its structural properties significantly.

References

S. Yang, Saade A. Jasim, D. Bokov, S. Chupradit, A. T. Nakhjiri, A. S. El-Shafay. (2022). Membrane distillation technology for molecular separation: A review on the fouling, wetting and transport phenomena. J. Mol. Liq., 349, 118115.

J. Li, D. Wang, J. Zhang, N. Zhang, Y. Chen, Z. Wang. (2023). High performance membrane distillation membranes with thermo-responsive self-cleaning capacities. Desalination, 555, 116544.

M. A. H. M. Hanoin, F. N. Zainuddin, N. M. Mokhtar. (2022). A Review of Solar-Powered Membrane Distillation System: Concept Design and Development. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 21, 27-38.

R. Dallaev, T. Pisarenko, D. Sobola, D., F. Orudzhev, S. Ramazanov, T. Trčka. (2022). Brief review of PVDF properties and applications potential. Polymers, 14, 4793.

N. M. Mokhtar, W. J. Lau, B. C. Ng, A. F. Ismail. (2014). Physicochemical study of polyvinylidenefluoride–Cloisite15A® composite membranes for membrane distillation application. RSC Advances, 4, 63367-63379.

S. Bonyadi, S., T. S. Chung. (2007). Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes. J. Membr. Sci., 306, 134-146.

F. Edwie, M. M. Teoh, T. S. Chung. (2012). Effects of additives on dual-layer hydrophobic–hydrophilic PVDF hollow fiber membranes for membrane distillation and continuous performance. Chem. Eng. Sci., 68, 567-578.

J. A. Prince, G. Singh, D, Rana, T. Matsuura, V. Anbharasi, T. S. Shanmugasundaram. (2012). Preparation and characterization of highly hydrophobic poly(vinylidene fluoride) – Clay nanocomposite nanofiber membranes (PVDF–clay NNMs) for desalination using direct contact membrane distillation. J. Membr. Sci., 397-398, 80-86.

S. Chabot, C. Roy, G. Chowdhury, T. Matsuura.

(1997). Development of poly(vinylidene fluoride) hollow-fiber membranes for the treatment of water/organic vapor mixtures. J. Appl. Polym. Sci., 65, 1263-1270.

J. P. G. Villaluenga, M. Khayet, M. A. López-Manchado, J. L. Valentin, B. Seoane, J. I. Mengual. (2007). Gas transport properties of polypropylene/clay composite membranes. Eur. Polym. J., 43, 1132-1143.

A. Alkhudhiri, N. Darwish and N. Hilal. (2012). Membrane distillation: A comprehensive review. Desalination, 287, 2-18.

S. Netpradit, P. Thiravetyan, S. Towprayoon. (2004). Adsorption of three azo reactive dyes by metal hydroxide sludge: effect of temperature, pH, and electrolytes. J. Colloid Interface Sci., 270, 255-261.

N. M. Mokhtar, W. J. Lau, A. F. Ismail, D. Veerasamy. (2015). Membrane distillation technology for treatment of wastewater from rubber industry in Malaysia. Proc. CIRP, 26, 792-796.

R. Das, K. Sondhi, S. Majumdar, S., S. Sarkar. (2016). Development of hydrophobic clay–alumina based capillary membrane for desalination of brine by membrane distillation. J. Asian Ceram. Soc., 4(3), 243-251.

S. K. Hubadillah, M. H. D. Othman, A. F. Ismail, M. A. Rahman, J. Jaafar. (2018). A low cost hydrophobic kaolin hollow fiber membrane (h-KHFM) for arsenic removal from aqueous solution via direct contact membrane distillation. Sep. Purif. Technol., 214, 31-39.

N. A. S. Muhamad, N. M. Mokhtar, R. Naim, W. J. Lau, N. F. Ismail. (2024). Treatment of wastewater from oil palm industry in Malaysia using polyvinylidene fluoride-bentonite hollow fiber membranes via membrane distillation system. Environ. Pol., 361, 124739.

R. Navarro-Tovar, P. Gorgojo, M. Jobson, P. Martin, M. Perez-Page. 2024. Innovations in water desalination: enhancing air gap membrane distillation performance by the incorporation of clay nanoparticles into PVDF matrix membranes. Environ. Sci.: Water Res. Technol., 10, 2418-2431.

M. A. H. M., Hanoin, F. N. Zainuddin, N. M. Mokhtar. (2022). A review of solar-powered membrane distillation system: Concept Design and Development, The Eurasia Proc. Sci. Technol. Eng. Math., 21, 27-38.

Downloads

Published

2024-12-12

How to Cite

Mokhtar, N. M., Naim, R., & Ismail, N. H. (2024). Effect of Cloisite 15A Clay Dispersion on the Structural Characteristics of PVDF Nanocomposite Membrane. Journal of Applied Membrane Science & Technology, 28(3), 47–57. https://doi.org/10.11113/jamst.v28n3.304

Issue

Section

Articles