Omniphobic PTFE based Hollow Fiber Membrane with ZnO Nanoparticles Deposition via Universal Spray Technique

Authors

  • W. M. Z. Wan Zulkifli Department of Energy Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. H. D. Othman ᵃDepartment of Energy Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇAdvanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. A. B. Pauzan Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. A. S. M. Hisam Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • F. H. Jaffar Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/amst.v28n2.289

Keywords:

Hydrophobic membrane, hollow fiber, nanoparticles, omniphobicity, polymeric membrane

Abstract

This investigation aimed to enhance the hydrophobicity of a polytetrafluoroethylene (PTFE) hollow fiber membrane, transforming it into an omniphobic surface. This was achieved by coating the membrane with a mixture of zinc oxide nanoparticles (ZnO-NPs) and polyvinylidene fluoride-cohexafluoropropylene (PVDF-HFP) using the universal spray technique. The membrane's morphology and performance were evaluated based on the number of spray cycles, which influenced the coating thickness on the membrane surface. The spraying process was varied up to 4 cycles to determine the membrane with the most effective deposition of ZnO NPs in terms of water contact angle and liquid entry pressure (LEPw). Results indicated that the membrane spray-coated up to 4 cycles, denoted as PTFE-4, exhibited a rough hierarchical re-entrant morphology, imparting omniphobic characteristics. The optimized membrane demonstrated a high water contact angle of 170° and a liquid entry pressure of 2.6 bar. Fourier-transform infrared (FTIR) and energy dispersive analysis of X-rays (EDX) confirmed the successful chemical integration of ZnO NPs onto the commercial membrane. This research holds significance for the future of membrane distillation in treating wastewater containing low surface tension pollutants.

References

C. Santhosh, V. Velmurugan, G. Jacob, S. K. Jeong, A. N. Grace, A. Bhatnagar. (2016). Role of nanomaterials in water treatment applications: A review. Chemical Engineering Journal, 306, 1116–1137.

A. Boretti, L. Rosa. (2019). Reassessing the projections of the World Water Development Report. NPJ Clean Water, 2.

D. T. Moussa, M. H. El-Naas, M. Nasser, M. J. Al-Marri. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. J Environ Manage, 186, 24-41.

E. Drioli, A. Ali, F. Macedonio. (2015). Membrane distillation: Recent developments and perspectives. Desalination, 356, 56-84.

A. Alkhudhiri, N. Darwish, N. Hilal. (2012). Membrane distillation: A comprehensive review. Desalination, 287, 2-18.

U. K. Kesieme, N. Milne, H. Aral, C. Y. Cheng, M. Duke. (2013). Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 323, 66-74.

J. Blanco Gálvez, L. García-Rodríguez, I. Martín-Mateos. (2009). Seawater desalination by an innovative solar-powered membrane distillation system: the MEDESOL project. Desalination, 246, 567-576.

M. Khayet. (2013). Treatment of radioactive wastewater solutions by direct contact membrane distillation using surface modified membranes. Desalination, 321, 60-66.

S. Lin, S. Nejati, C. Boo, Y. Hu, C.O. Osuji, M. Elimelech, (2014). Omniphobic membrane for robust membrane distillation. Environ Sci Technol Lett., 1, 443-447.

S. Mosadegh-Sedghi, D. Rodrigue, J. Brisson, M. C. Iliuta. (2014). Wetting phenomenon in membrane contactors - Causes and prevention. J Memb Sci., 452, 332-353.

B. J. Deka, J. Guo, N. K. Khanzada, A. K. An. (2019). Omniphobic re-entrant PVDF membrane with ZnO nanoparticles composite for desalination of low surface tension oily seawater. Water Res., 165, 114982.

X. Lu, Y. Peng, L. Ge, R. Lin, Z. Zhu, S. Liu. (2016). Amphiphobic PVDF composite membranes for anti-fouling direct contact membrane distillation. J Memb Sci., 505, 61-69.

A. Razmjou, E. Arifin, G. Dong, J. Mansouri, V. Chen. (2012). Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J Memb Sci., 415-416, 850-863.

S. Meng, J. Mansouri, Y. Ye, V. Chen. (2014). Effect of templating agents on the properties and membrane distillation performance of TiO2-coated PVDF membranes. J Memb Sci., 450, 48-59.

C. Boo, J. Lee, M. Elimelech. (2016). Engineering surface energy and nanostructure of microporous films for expanded membrane distillation applications. Environ Sci Technol., 50, 8112-8119.

S. Balta, A. Sotto, P. Luis, L. Benea, B. van der Bruggen, J. Kim. (2012). A new outlook on membrane enhancement with nanoparticles: The alternative of ZnO. J Memb Sci., 389, 155-161.

Z. L. Wang. (2007). Novel nanostructures of ZnO for nanoscale photonics, optoelectronics, piezoelectricity, and sensing. Appl Phys A Mater Sci Process., 88, 7-15.

S. Liang, K. Xiao, Y. Mo, X. Huang. (2012). A novel ZnO nanoparticle blended polyvinylidene fluoride membrane for anti-irreversible fouling. J Memb Sci., 394-395, 184-192.

N. Thomas, M. O. Mavukkandy, S. Loutatidou, H. A. Arafat. (2017). Membrane distillation research & implementation: Lessons from the past five decades. Sep Purif Technol., 189, 108-127.

L. Eykens, K. de Sitter, C. Dotremont, L. Pinoy, B. van der Bruggen. (2016). How to optimize the membrane properties for membrane distillation: A review. Ind Eng Chem Res., 55, 9333-9343.

Z. S. Tai, M. H. A. Aziz, M. H. D. Othman, A. F. Ismail, M. A. Rahman, J. Jaafar. 2019. An overview of membrane distillation. Membrane separation principles and applications. Elsevier.

S. S. Ray, S. S. Chen, C. W. Li, N. C. Nguyen, H. T. Nguyen. (2016). A comprehensive review: Electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Adv., 6, 85495-85514.

M. H. Abd Aziz, M. A. B. Pauzan, N. A. S. Mohd Hisam, M. H. D. Othman, M. R. Adam, Y. Iwamoto, M. Hafiz Puteh, M. A. Rahman, J. Jaafar, A. Fauzi Ismail, T. Agustiono Kurniawan, S. Abu Bakar. (2022). Superhydrophobic ball clay-based ceramic hollow fiber membrane via universal spray coating method for membrane distillation. Sep Purif Technol., 288, 120574.

J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong. (2018). Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9.

J. Hubert, T. Dufour, N. Vandencasteele, S. Desbief, R. Lazzaroni, F. Reniers. (2012). Etching processes of polytetrafluoroethylene surfaces exposed to He and He-O2 atmospheric post-discharges. Langmuir, 28, 9466-9474.

Q. Meng, W. Li, Y. Zheng, Z. Zhang. (2010). Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride). J Appl Polym Sci., 116, 2674-2684.

G. Peng, X. Zhao, Z. Zhan, S. Ci, Q. Wang, Y. Liang, M. Zhao. (2014). New crystal structure and discharge efficiency of poly(vinylidene fluoride-hexafluoropropylene)/poly(methyl methacrylate) blend films. RSC Adv., 4, 16849-16854.

K. Schneider, W. Holz, R. Wollbeck, S. Ripperger. 1988. Membranes and modules for transmembrane distillation. Journal of Membrane Science, 39(1), 25-42.

A. K. Metya, S. Khan, J. K. Singh. (2014). Wetting transition of the ethanol–water droplet on smooth and textured surfaces. The Journal of Physical Chemistry C, 118, 4113-4121.

Downloads

Published

2024-07-22

How to Cite

Wan Zulkifli, W. M. Z., Othman, M. H. D., Pauzan, M. A. B., Hisam, N. A. S. M., & Jaffar, F. H. (2024). Omniphobic PTFE based Hollow Fiber Membrane with ZnO Nanoparticles Deposition via Universal Spray Technique. Journal of Applied Membrane Science & Technology, 28(2), 1–11. https://doi.org/10.11113/amst.v28n2.289

Issue

Section

Articles