Application of Graphene-Based Derived Rice Husk Waste for Membrane Gas Separation Technologies: A Comprehensive Review


  • M. S. Ismail ᵃFaculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. Yusof ᵃFaculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. Z. M. Yusop ᵇAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᶜFaculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia



Graphene-based nanofillers, membrane, gas separation, rice husk waste


This study intends to comprehensively evaluate the application of graphene-based nanofillers obtained from rice husk waste in the field of membrane gas separation technologies. Graphene, owing to its distinctive structural characteristics, has emerged as a highly promising filler material for membrane fabrication in gas separation applications. This comprehensive review provides an in-depth evaluation of the diverse synthesis methods employed and the resulting properties of graphene obtained from rice husk waste materials, with an inclusive chemical mechanism of graphene formation from rice husk waste. Furthermore, this study reveals the inherent capabilities of graphene in enhancing the performance of membranes while also examining the influence of nanofillers on solubility selectivity. In conclusion, it is imperative to underline the need for additional research and development activities aimed at expanding the efficiency and scalability of the membrane fabrication process through the utilization of graphene nanofillers derived from rice husk waste.


S. Janakiram, M. Ahmadi, Z. Dai, L. Ansaloni, and L. Deng. (2018). Performance of nanocomposite membranes containing 0D to 2D nanofillers for CO2 separation: A review. Membranes (Basel), 8, 2.

P. S. Goh and A. F. Ismail. (2020). Nanocomposite membrane materials for gas separation. Elsevier. 21-99.

N. Norahim, P. Yaisanga, K. Faungnawakij, T. Charinpanitkul, and C. Klaysom. (2018). Recent membrane developments for CO2 separation and capture. Chem Eng Technol., 41(2), 211-223.

N. N. Rosyadah Ahmad, H. Mukhtar, D. F. Mohshim, R. Nasir, and Z. Man. (2016). Surface modification in inorganic filler of mixed matrix membrane for enhancing the gas separation performance. Reviews in Chemical Engineering, 32(2), 181-200.

A. A. Ghazali, S. Abd Rahman, and R. Abu Samah. (2020,). Potential of adsorbents from agricultural wastes as alternative fillers in mixed matrix membrane for gas separation: A review. Green Processing and Synthesis, 9(1), 219-229.

M. Ahmadi, S. Janakiram, Z. Dai, L. Ansaloni, and L. Deng, (2018). Performance of mixed matrix membranes containing porous two-dimensional (2D) and three-dimensional (3D) fillers for CO2 separation: A review. Membranes (Basel), 8(3).

K. Zarshenas, A. Raisi, and A. Aroujalian. (2016). Mixed matrix membrane of nano-zeolite NaX/poly (ether-block-amide) for gas separation applications. J Memb Sci, 510, 270-283.

I. Khalilinejad, A. Kargari, and H. Sanaeepur. (2017). Preparation and characterization of (Pebax-1657 + silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chemical Papers, 71(4), 803-818.

E. Ahmadpour, M. V. Sarfaraz, R. M. Behbahani, A. A. Shamsabadi, and M. Aghajani. (2016). Fabrication of mixed matrix membranes containing TiO2 nanoparticles in Pebax 1657 as a copolymer on an ultra-porous PVC support. J Nat Gas Sci Eng., 35, 33-41.

T. Li, Y. Pan, K.-V. Peinemann, and Z. Lai. (2013). Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J Memb Sci., 425-426, 235-242.

J. Sánchez-Laínez, I. Gracia-Guillén, B. Zornoza, C. Téllez, and J. Coronas. (2019). Thin supported MOF based mixed matrix membranes of Pebax-1657 for biogas upgrade. New Journal of Chemistry, 43(1), 312-319.

A. Jomekian, R. M. Behbahani, T. Mohammadi, and A. Kargari. (2017). High speed spin coating in fabrication of Pebax 1657 based mixed matrix membrane filled with ultra-porous ZIF-8 particles for CO2/CH4 separation. Korean Journal of Chemical Engineering, 34(2), 440-453.

J. Sun, Q. Li, G. Chen, J. Duan, G. Liu, and W. Jin. (2019). MOF-801 incorporated PEBA mixed-matrix composite membranes for CO2 capture. Sep Purif Technol., 217(January), 229-239.

M. Mozafari, R. Abedini, and A. Rahimpour. (2018). Zr-MOFs-incorporated thin film nanocomposite Pebax 1657 membranes dip-coated on polymethylpentyne layer for efficient separation of CO2/CH4. J Mater Chem A Mater, 6(26), 12380-12392.

S. A. Mohammed et al. (2019). CO2 /N2 selectivity enhancement of PEBAX-1657/Aminated partially reduced graphene oxide mixed matrix composite membrane. Sep Purif Technol., 223, 142-153.

N. Norahim, K. Faungnawakij, A. T. Quitain, and C. Klaysom. (2019). Composite membranes of graphene oxide for CO2/CH4 separation. Journal of Chemical Technology and Biotechnology, 94(9), 2783-2791.

S. A. Habibiannejad, A. Aroujalian, and A. Raisi. (2016). Pebax-1657 mixed matrix membrane containing surface modified multi-walled carbon nanotubes for gas separation. RSC Adv., 6(83), 79563-79577.

F. Pazani and A. Aroujalian. (2020). High-performance gas separation using mixed-matrix composite membranes containing graphene nanoplatelets. Polymer Bulletin, 0123456789.

G. Huang et al. (2018). Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. J Memb Sci, 565, 370-379.

C. Y. Chuah et al. (2018). Harnessing filler materials for enhancing biogas separation membranes. Chem Rev., 118(18), 8655-8769.

K. C. Wong, P. S. Goh, T. Taniguchi, A. F. Ismail, and K. Zahri. (2019). The role of geometrically different carbon-based fillers on the formation and gas separation performance of nanocomposite membrane. Carbon N Y, 149, 33-44.

H. W. Yoon, Y. H. Cho, and H. B. Park. (2015. Graphene-based membranes : Status and prospects subject areas. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 24(374), 1-23.

A. F. Ismail, K. C. Khulbe, and T. Matsuura. (2015). Gas separation membranes: Polymeric and inorganic. Springer International Publishing. 331.

K. A. Madurani, S. Suprapto, N. I. Machrita, S. L. Bahar, W. Illiya, and F. Kurniawan. (2020). Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry. ECS Journal of Solid State Science and Technology, 9(9), 093013.

H. P. Boehm, R. Setton, and E. Stumpp. (1986). Nomenclature and terminology of graphite intercalation compounds. Carbon N Y, 24(2), 241-245.

A. Bianco et al. (2013). All in the graphene family - A recommended nomenclature for two-dimensional carbon materials. Carbon N Y. 65, 1-6.

K. S. Novoselov et al. (2004). Electric field effect in atomically thin carbon films. Science, 306, 666-669.

Y. Bleu, F. Bourquard, T. Tite, A. Loir, and C. Maddi. (2018). Review of graphene growth from a solid carbon source by pulsed laser deposition (PLD). Front Chem., 6(572).

A. Boretti, S. Al-Zubaidy, M. Vaclavikova, M. Al-Abri, S. Castelletto, and S. Mikhalovsky. (2018). Outlook for graphene-based desalination membranes. NPJ Clean Water, 1(1), 1-11.

T. J. M. Fraga, M. N. Carvalho, M. G. Ghislandi, and M. A. Da Motta Sobrinho. (2019). Functionalized graphene-based materials as innovative adsorbents of organic pollutants: A concise overview. 36(1).

A. Ebadi Amooghin, S. Mashhadikhan, H. Sanaeepur, A. Moghadassi, T. Matsuura, and S. Ramakrishna. (2019). Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): A new horizon for efficient CO2 separation. Prog Mater Sci., 102, 222-295.

Y. Xu, H. Cao, Y. Xue, B. Li, and W. Cai. (2018). Liquid-phase exfoliation of graphene : an overview on exfoliation media, techniques, and challenges. Nanomaterials, 8, 942-974.

A. K. Geim. (2012). Graphene prehistory. Phys Scr., T146.

P. R. Wallace. (1974). The band theory of Graphite. Physical Review, 71(9), 622-634.

A. K. Geim and K. S. Novoselov. (2007). The rise of graphene. Nat Mater, 6, 183-191.

Y. Zhu et al. (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35), 3906-3924.

I. W. Frank, D. M. Tanenbaum, A. M. van der Zande, and P. L. McEuen. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 25(6), 2558.

C. Lee, X. Wei, J. W. Kysar, and J. Hone. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388.

A. Amiri, M. Naraghi, G. Ahmadi, M. Soleymaniha, and M. Shanbedi. (2018). A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges. FlatChem, 8, 40-71.

A. A. Balandin et al. (2008). Superior thermal conductivity of single-layer graphene. Nano Lett., 8(3), 902-907.

K. S. Novoselov et al. (2005). Two-dimensional atomic crystals. Phys Today, 102(30), 10451-10453.

S. Gadipelli and Z. X. Guo. (2015). Graphene-based materials: Synthesis and gas sorption, storage and separation. Prog Mater Sci., 69, 1-60.

S. Chhetri, T. Kuila, and N. Chandra Murmu. (2016). Graphene composites. Graphene Technology: From Laboratory to Fabrication, 63-111.

M. Liu, D. Song, X. Wang, C. Sun, and D. Jing. (2020). Asymmetric two-layer porous membrane for gas separation. Journal of Physical Chemistry Letters, 11(15), 6359-6363.

N. Song, X. Gao, Z. Ma, X. Wang, Y. Wei, and C. Gao. (2018). A review of graphene-based separation membrane: Materials, characteristics, preparation and applications. Desalination, 437(February), 59-72.

G. Dong, J. Hou, J. Wang, Y. Zhang, V. Chen, and J. Liu. (2016). Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J Memb Sci., 520, 860-868.

W. Yu, L. Sisi, Y. Haiyan, and L. Jie. (2020). Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv., 10(26), 15328-15345.

S. Goswami, P. Banerjee, S. Datta, A. Mukhopadhayay, and P. Das. (2017). Graphene oxide nanoplatelets synthesized with carbonized agro-waste biomass as green precursor and its application for the treatment of dye rich wastewater. Process Safety and Environmental Protection, 106, 163-172.

N. F. Tajul Arifin, N. Yusof, A. F. Ismail, J. Jaafar, F. Aziz, and W. N. Wan Salleh. (2020). Graphene from waste and bioprecursors synthesis method and its application: A review. Malaysian Journal of Fundamental and Applied Sciences, 16(3), 342-350.

N. Raghavan, S. Thangavel, and G. Venugopal. (2017). A short review on preparation of graphene from waste and bioprecursors. Appl Mater Today, 7, 246-254.

M. T. Safian, U. S. Haron, and M. N. Mohammad Ibrahim. (2020). A Review on bio-based graphene derived from biomass wastes. Bioresources, 15(4), 9756-9785.

H. Muramatsu et al. (2014). Rice Husk-derived graphene with nano-sized domains and clean edges. Small, 1-5.

I. Rhee, J. Seok, Y. Ahm, J. Hee, and J. Hoon. (2016). Electrically conductive cement mortar: Incorporating rice husk-derived high-surface-area graphene. Constr Build Mater, 125, 632-642.

K. Sharma and V. K. Garg. (2019). Vermicomposting of waste: A zero-waste approach for waste management. Elsevier B.V.

T. Purkait, G. Singh, M. Singh, D. Kumar, and R. S. Dey. (2017). Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor. Sci Rep, 7(1), 1-14.

X. Zhou, L. J. Broadbelt, and R. Vinu. (2016). Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass. 1st ed. Elsevier Inc. 49.

N. E. Ali. (2020). Agricultural Waste Management System (AWMS) in Malaysian. Open Access Journal of Waste Management & Xenobiotics, 3(2), 1-2.

Y. Yan et al. (2020). Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnol Rev, 9(1), 1284-1314.

X. Xie and B. Goodell. (2014). Thermal degradation and conversion of plant biomass into high value carbon products. ACS Symposium Series, 1158, 147-158.

H. Li, H. Zhang, K. Li, J. Zhang, M. Sun, and B. Su. (2020). Catalytic graphitization of coke carbon by iron: Understanding the evolution of carbon Structure, morphology and lattice fringes. Fuel, 279(March), 118531.

A. Oya, R. Yamashita, and S. Otani. (1979). Catalytic graphitization of carbons by borons. Carbon N Y, 17, 131-137.

Q. Yan et al. (2018). Catalytic graphitization of kraft lignin to graphene-based structures with four different transitional metals. Journal of Nanoparticle Research, 20(9).

R. Nandi, M. K. Jha, S. K. Guchhait, D. Sutradhar, and S. Yadav. (2023). Impact of KOH activation on rice husk derived porous activated carbon for carbon capture at flue gas alike temperatures with high CO2/N2 selectivity. ACS Omega, 8(5), 4802-4812.

M. Seitzhanova, D. Chenchik, M. Yeleuov, Z. Mansurov, R. Di Capua, and N. Elibaeva. (2018). Synthesis and characterization of graphene layers from rice husks. Chemical Bulletin of Kazakh National University, 2, 12-18.

S. Sankar et al. (2017). Ultrathin graphene nanosheets derived from rice husks for sustainable supercapacitor electrodes. New Journal of Chemistry, 41, 13792-13797.

P. Singh, J. Bahadur, and K. Pal. (2017). One-step one chemical synthesis process of graphene from rice husk for energy storage applications. Graphene, 6, 61-71.

M. Seitzhanova, M. Yeleuov, and Z. A. Mansurov. (2018). Synthesis and characterization of graphene layers from rice husks. Chemical Bulletin of Kazakh National University, 2(89), 12-18.

M. Yeleuov et al. (2020). Modified activated graphene-based carbon electrodes from rice husk for supercapacitor applications. Energies (Basel). 13(18), 1-10.




How to Cite

Ismail, M. S., Yusof, N., & Yusop, M. Z. M. (2024). Application of Graphene-Based Derived Rice Husk Waste for Membrane Gas Separation Technologies: A Comprehensive Review . Journal of Applied Membrane Science & Technology, 28(1), 47–62.