Machine Learning for Accelerating Development of Ion Conducting Membranes for Fuel Cell Applications

Authors

  • Mohamed Mahmoud Nasef ᵃCentre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia ᵇMalaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia Kuala Lumpur, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
  • Mohamed Hadi Habaebi Department of Electrical and Computer Engineering, International Islamic University Malaysia, Jalan Gombak, 53100 Kuala Lumpur, Selangor, Malaysia

DOI:

https://doi.org/10.11113/jamst.v29n1.308

Keywords:

Machine learning, ion conduction membranes, ML frameworks, fuel cells, deep learning

Abstract

Fuel cells such as polymer electrolyte membrane fuel cells are playing crucial role in the transition towards sustainable energy systems. Ion conducting membranes (ICMs) are playing critical chemical and mechanical roles in such fuel cells which directly affecting the efficiency, durability and overall device performance. Recent progress in machine learning (ML) is introducing powerful tools to aid in the discovery, design, and optimization of membrane materials that is likely to lead to quicker and more cost-effective materials development cycles. This article discusses the significant potential of applying ML research and development of new generation of ICMs for polymer electrolyte membrane fuel cells. The scope is overviewing types of polymer electrolyte membrane fuel cells and their operation environments with different ICMs in addition to present status and technical challenges for development new ICMs.  Moreover, the key ML algorithms for ion exchange membranes (IEMs) development techniques together with available ML frameworks and their potential uses in optimization of membranes structural properties, performance prediction, and new materials discovery are discussed. The challenges and the future directional approaches to accelerate the development of robust ICMs using ML driven research that ultimately improving the sustainability and efficiency of fuel cell technologies are elaborated.

References

Acar, C., Beskese, A., & Tekin Temur, G. (2022). Comparative fuel cell sustainability assessment with a novel approach. International Journal of Hydrogen Energy, 47(1), 575–594.

Brodt, M., Müller, K., Kerres, J., Katsounaros, I., Mayrhofer, K., Preuster, P., Wasserscheid, P., & Thiele, S. (2021). The 2-propanol fuel cell: A review from the perspective of a hydrogen energy economy. Energy Technology, 9(9), 2100164.

Wang, Y., Yuan, H., Martinez, A., Hong, P., Xu, H., & Bockmiller, F. R. (2021). Polymer electrolyte membrane fuel cell and hydrogen station networks for automobiles: Status, technology, and perspectives. Advances in Applied Energy, 2, 100011.

Naef, A. A. Q., & Abdulrahman, G. A. Q. (2024). A recent comprehensive review of fuel cells: History, types, and applications. International Journal of Energy Research, 1, 7271748.

Ahmad, S., Nawaz, T., Ali, A., Orhan, M. F., Samreen, A., & Kannan, A. M. (2022). An overview of proton exchange membranes for fuel cells: Materials and manufacturing. International Journal of Hydrogen Energy, 47(44), 19086–19131.

Ng, W. K., Wong, W. Y., Rosli, N. A. H., & Loh, K. S. (2023). Commercial anion exchange membranes (AEMs) for fuel cell and water electrolyzer applications: Performance, durability, and materials advancement. Separations, 10, 424.

Agboola, O., Fayomi, O. S. I., Ayodeji, A., Ayeni, A. O., Alagbe, E. E., Sanni, S. E., Okoro, E. E., Moropeng, L., Sadiku, R., Kupolati, K. W., & Oni, B. A. (2021). A review on polymer nanocomposites and their effective applications in membranes and adsorbents for water treatment and gas separation. Membranes, 11(2), 139.

Hwang, S., Lee, H. G., Jeong, Y.-G., Choi, C., Hwang, I., Song, S. H., Nam, S. Y., Lee, J. H., & Kim, K. (2022). Polymer electrolyte membranes containing functionalized organic/inorganic composite for polymer electrolyte membrane fuel cell applications. International Journal of Molecular Sciences, 23(22), 14252.

Tellez-Cruz, M. M., Escorihuela, J., Solorza-Feria, O., & Compañ, V. (2021). Proton exchange membrane fuel cells (PEMFCs): Advances and challenges. Polymers, 13(18), 3064.

Osman, A. I., Nasr, M., Farghali, M., Bakr, S. S., Eltaweil, A. S., Rashwan, A. K., & Abd El Monaem, E. M. (2024). Machine learning for membrane design in energy production, gas separation, and water treatment: A review. Environmental Chemistry Letters, 22(2), 505–560.

Xu, T., Wang, L., & Liu, Y. (2020). Prediction of proton conductivity of fuel cell membranes using machine learning. Journal of Power Sources, 479, 228301.

Park, J., Kim, Y., & Lee, S. (2022). Multilayered structures for methanol crossover reduction in DMFCs. Membranes, 12(9), 872.

Zhao, C., Wu, Y., & Chen, X. (2019). Sulfonated polymers for enhanced proton conduction. Chemistry of Materials, 31(3), 1123–1133.

Wang, J., Chen, Y., & Zhang, Y. (2021). Hybrid membrane structures for improved proton conductivity. ACS Applied Materials & Interfaces, 13(15), 17885–17895.

Lei, M., Zhang, Q., Chi, M., Yu, Y., Jiang, H., Wang, S., & Min, D. (2021). Anion exchange membrane with high hydroxide ion conductivity and robust tensile strength fabricated from quaternary ammonia functionalized Pinus contorta, Dougl. chip. Industrial Crops and Products, 166, 113458.

Kim, H., Lee, J., & Choi, Y. (2021). Cross-linked membranes for enhanced chemical stability in PEMFCs. Journal of Membrane Science, 622, 119935.

Liu, Y., Zhang, Q., & Zhao, J. (2020). Advances in aromatic polymer backbones for fuel cell membranes. Polymer Reviews, 60(2), 195–214.

Li, X., Huang, Y., & Zhao, C. (2020). Composite membranes for enhanced mechanical properties in fuel cells. Advanced Functional Materials, 30(12), 2000548.

Chen, G., Xu, Y., & Wang, J. (2021). Reinforcement strategies for polymer electrolyte membranes. Journal of Applied Polymer Science, 138(21), 50771.

Zhang, Y., Chen, Z., & Liu, H. (2022). Thermally stable membranes for high-temperature PEMFCs. Energy & Environmental Science, 15(3), 1766–1780.

Yang, F., Li, H., & Liu, Y. (2022). Thermal stability of novel membrane materials. Journal of Power Sources, 526, 231007.

Liu, Z., Wang, Y., & Zhao, Q. (2022). Hydration management in PEM fuel cell membranes. Journal of Membrane Science, 641, 119558.

Kim, S., Lee, H., & Park, J. (2020). Hydrophilic-hydrophobic balance in ion exchange membranes. Water Research, 171, 115489.

Park, H., Lee, J., & Kim, S. (2023). Non-fluorinated polymer membranes for cost-effective fuel cells. Renewable Energy, 213, 115973.

Zhao, X., Zhang, Y., & Liu, J. (2021). Economical membrane materials for PEMFCs. Energy Conversion and Management, 236, 114432.

Zhang, L., Wang, S., & Li, Y. (2022). Electrospun membranes for tailored ion pathways. Advanced Energy Materials, 12(9), 2101234.

Chen, X., Li, Y., & Wang, T. (2021). Phase inversion methods for membrane design. Materials Today, 45, 184–203.

Legala, A., Zhao, J., & Li, X. (2022). Machine learning modeling for proton exchange membrane fuel cell performance. Energy and AI, 10(1), 100183.

Griesemer, S., Xia, Y., & Wolverton, C. (2023). Accelerating the prediction of stable materials with machine learning. Nature Computer Science, 3(11), 934–945.

Barbierato, E., & Gatti, A. (2024). The challenges of machine learning: A critical review. Electronics, 13(2), 416.

Kibrete, F., Trzepieciński, T., Gebremedhen, H. S., & Woldemichael, D. E. (2023). Artificial intelligence in predicting mechanical properties of composite materials. Journal of Composites Science, 7(9), 364.

Batool, M., Sanumi, O., & Jankovic, J. (2024). Application of artificial intelligence in materials science, with a special focus on fuel cells and electrolyzers. Energy and AI, 18, 100424.

Ali, A., Hamraz, M., Kumam, P., Khan, D. M., Khalil, U., Sulaiman, M., & Khan, Z. (2020). A k-nearest neighbours based ensemble via optimal model selection for regression. IEEE Access, 8, 132095–132105.

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. Journal of Biomedical Informatics, 35(5–6), 352–359.

Ismail, M., Hassan, N., & Bafjaish, S. S. (2020). Comparative analysis of Naive Bayesian techniques in health-related classification tasks. Journal of Soft Computing and Data Mining, 1(2), 1–10.

Hao, P. Y., Chiang, J. H., & Chen, Y. D. (2022). Possibilistic classification by support vector networks. Neural Networks, 149, 40–56.

Sfeir, G., Rodrigues, F., & Abou-Zeid, M. (2022). Gaussian process latent class choice models. Transportation Research Part C: Emerging Technologies, 136, 103552.

Mohamed, A., Ibrahem, H., & Kim, K. (2022). Machine learning-based simulation for proton exchange membrane electrolyzer cell. Energy Reports, 8, 13425–13437.

Zhang, X., Liu, Y., & Wu, G. (2020). Machine learning-assisted material design for proton exchange membrane fuel cells. Journal of Power Sources, 450, 227602.

Kim, J., Park, H., & Han, S. (2019). Unsupervised learning for classification of fuel cell materials. ACS Applied Materials & Interfaces, 11(18), 16512–16522.

Shuai, Q., Wang, Y., Jiang, Z., & Hua, Q. (2024). Reinforcement learning-based energy management for fuel cell electric vehicles considering fuel cell degradation. Energies, 17(7), 1586.

Lee, H., Kim, D., & Chen, Z. (2020). Reinforcement learning for optimizing fuel cell operational parameters. Electrochimica Acta, 354, 136756.

Reddy, Y. C. P., Pulabaigari, V., & Reddy, E. B. (2018). Semi-supervised learning: A brief review. International Journal of Engineering & Technology, 7(1–8), 81.

Wang, Y., Li, J., & Zhang, H. (2022). Semi-supervised learning for predicting fuel cell membrane properties. Journal of Membrane Science, 638, 119634.

Chato, L., & Regentova, E. (2023). Survey of transfer learning approaches in the machine learning of digital health sensing data. Journal of Personalized Medicine, 13(12), 1703.

Chen, Q., Zhao, L., & Xu, K. (2021). Transfer learning approach for fuel cell material property prediction. Advanced Functional Materials, 31(4), 2007512.

Ding, R., Zhang, S., Chen, Y., Rui, Z., Hua, K., Wu, Y., Li, X., Duan, X., Wang, X., Li, J., & Liu, J. (2022). Application of machine learning in optimizing proton exchange membrane fuel cells: A review. Energy and AI, 9, 100170.

Su, D., Zheng, J., Ma, J., Dong, Z., Chen, Z., & Qin, Y. (2023). Application of machine learning in fuel cell research. Energies, 16(11), 4390.

Paciocco, J., Cawte, T., & Bazylak, A. (2023). Predicting optimal membrane hydration and ohmic losses in operating fuel cells with machine learning. Journal of Power Sources, 573, 233119.

Qin, S., Jiang, S., Li, J., Balaprakash, P., Van Lehn, R. C., & Zavala, V. M. (2023). Capturing molecular interactions in graph neural networks: A case study in multi-component phase equilibrium. Digital Discovery, 2(1), 138–151.

Baratchi, M., Wang, C., Limmer, S., van Rijn, J. N., Hoos, H., Bäck, T., & Olhofer, M. (2024). Automated machine learning: past, present and future. Artificial Intelligence Review 2024, 57(5), 122.

Gardner, J. R., Pleiss, G., Weinberger, K. Q., & Wilson, A. G. (2018). GPyTorch: Blackbox matrix-matrix Gaussian process inference with GPU acceleration. In Advances in Neural Information Processing Systems (NeurIPS), 7576–7586.

Head, T., MechCoder, Louppe, G., Shcherbatyi, I., & others. (2018). scikit-optimize: Sequential model-based optimization. Journal of Open Source Software, 3(29), 900.

Li, K., Wang, J., Song, Y., & Wang, Y. (2023). Machine learning-guided discovery of ionic polymer electrolytes for lithium metal batteries. Nature Communications, 14(1), 2789.

Ding, Y., & Huang, J. (2024). Implementation and validation of an OpenMM plugin for the deep potential representation of potential energy. International Journal of Molecular Sciences, 25(3), 1448.

Wheatle, B.K., Fuentes, E.F, Lynd, N.A., Ganesan, V. (2020). Design of polymer blend electrolytes through a machine learning approach, Macromolecules, 53 (21), 9449–9459.

Martin, T. B., & Audus, D. J. (2023). Emerging trends in machine learning: A polymer perspective. ACS Polymers Au, 3(3), 239–258.

Zou, X., Pan, J., Sun, Z., Wang, B., Jin, Z., Xu, G., & Yan, F. (2021). Machine learning analysis and prediction models of alkaline anion exchange membranes for fuel cells. Energy & Environmental Science, 14(7), 3965–3975.

Zhai, F.-H., Zhan, Q.-Q., Yang, Y.-F., Ye, N.-Y., Wan, R.-Y., Wang, J., Chen, S., & He, R.-H. (2022). A deep learning protocol for analyzing and predicting ionic conductivity of anion exchange membranes. Journal of Membrane Science, 642, 119983.

Park, J., Shim, Y., Lee, F., Rammohan, A., Goyal, S., Shim, M., Jeong, C., & Kim, D. S. (2022). Prediction and interpretation of polymer properties using the graph convolutional network. ACS Polymers Au, 2(4), 213–222.

Wang, Y., Seo, B., Wang, B., et al. (2020). Fundamentals, materials, and machine learning of polymer electrolyte membrane fuel cell technology. Energy and AI, 1, 100014.

Queen, O., McCarver, G. A., Thatigotla, S., Abolins, B. P., Brown, C. L., Maroulas, V., & Vogiatzis, K. D. (2023). Polymer graph neural networks for multitask property learning. Npj Computational Materials, 9(1), 1–10.

Kaiser, R., Ahn, C-Y., Kim, Y-H., Park, J-C. (2024). Towards reliable prediction of performance for polymer electrolyte membrane fuel cells via machine learning-integrated hybrid numerical simulations. Processes, 12(6), 1140.

Gao, Q., Dukker, T., Schweidtmann , A. M. (2023). Self-supervised graph neural networks for polymer property prediction, Molecular Systems Design & Engineering, 9, 1130–1143.

Deringer, V. L., Bartók, A. P., Bernstein, N., Wilkins, D. M., Ceriotti, M., Csányi, G. (2021). Gaussian process regression for materials and molecules, Chemical Reviews, 121(16), 10073–10141.

Echabarri, S., Do, P., Vu, H-C., Bornand, B. (2024). Machine learning and Bayesian optimization for performance prediction of proton-exchange membrane fuel cells, Energy and AI, 17, 100380.

Hussain, I., Sajjad, U., Abbas, N., Sultan, M., Sangeetha, T., Ali, H. M., Said, Z., Yan, W-M. (2024). Humidification potential optimization of various membranes for proton exchange membrane fuel cell: Experiments and deep learning assisted metaheuristics. Alexandria Engineering Journal, 87, 424–447.

Durango, J. M., González-Castaño, C., Restrepo, C., Muñoz, J. (2022). Application of support vector machine to obtain the dynamic model of proton-exchange membrane fuel cell. Membranes, 12(11), 1058

Ullah, A. (2024). Optimization and predictive modeling of membrane based produced water treatment using machine learning models. Chemical Engineering Research and Design, 207, 65–76.

Wang, B., Yang, Z., Ji, M., Shan, J., Ni, M., Hou, Z., Cai, J., Gu, X., Yuan X., Gong, Z., Du, Q., Yin, Y., Jiao, K. (2023). Long short-term memory deep learning model for predicting the dynamic performance of automotive PEMFC system. Energy and AI, 14, 100278.

Kang, J., Kim, H., & Lee, Y. (2022). Deep learning prediction of ion conductivity in polymer electrolyte membranes using molecular dynamics datasets. Journal of Membrane Science, 645, 120–136.

Li, X., Zhang, Y., & Chen, Z. (2021). Graph neural networks for modeling ion transport in complex membrane structures. Nature Communications, 12, 3587.

Zhou, T., Wang, J., & Ma, L. (2023). Gaussian process regression for predicting ion mobility in polymer electrolytes: A combination with molecular dynamics simulations. Advanced Functional Materials, 33(7), 2200457.

Wang, J., Liu, X., & Zhao, H. (2021). Application of Bayesian optimization for the enhancement of mechanical properties in hybrid polymer-inorganic membranes. Journal of Membrane Science, 628, 119246.

Chen, Q., Wang, Y., & Lee, T. (2022). Deep learning approaches for predicting the conductivity of composite polymer electrolyte membranes. Advanced Materials, 34(5), 2201234.

Smith, D. R., Patel, A., & Wu, P. (2023). Gaussian process regression for optimizing hybrid membrane compositions: A new approach to organic-inorganic material discovery. Journal of Power Sources, 545, 231978.

Smith, A. R., Patel, S., & Huang, L. (2021). Application of recurrent neural networks for predicting membrane degradation in proton exchange membrane fuel cells. Journal of Power Sources, 492, 229694.

Jones, D. M., Kim, J., & Lee, Y. (2022). Survival analysis for evaluating the lifespan of fuel cell membranes under various operational conditions. Electrochimica Acta, 407, 139863.

Yin, H., Xu, M., Luo, Z., Bi, X., Li, J., Zhang, S., & Wang, X. (2024). Machine learning for membrane design and discovery. Green Energy & Environment, 9(1), 54–70.

Ding, R., Ding, Y., Zhang, H., Wang, R., Xu, Z., Liu, Y., Yin, W., Wang, J., Li, J., & Liu, J. (2021). Applying machine learning to boost the development of high-performance membrane electrode assembly for proton exchange membrane fuel cells. Journal of Materials Chemistry A, 9(11), 6841–6850.

Lee, S., Park, J., & Choi, K. (2021). Machine learning for economic optimization of membrane materials in fuel cells. Journal of Power Sources, 512, 230479.

Kim, H., Nguyen, T., & Li, Z. (2022). Reinforcement learning in the optimization of scalable fabrication processes for fuel cell membranes. AIChE Journal, 68(7), e17736.

Garcia, M., Smith, D., & Patel, A. (2023). Application of Gaussian processes for predicting energy use and environmental impact in membrane manufacturing. Journal of Cleaner Production, 385, 135764.

Zhang, Y., Liu, X., & Wang, T. (2022). Application of random forest models in virtual screening of polymer membranes for fuel cells. Journal of Materials Chemistry A, 10(32), 18765–18774.

Li, F., Qiu, J., & Zhang, Z. (2021). Generative adversarial networks for the inverse design of polymer electrolyte membranes. Nature Machine Intelligence, 3(7), 536–546.

Chen, H., Kim, M., & Patel, R. (2023). Machine learning-based virtual screening for high-conductivity polymer electrolytes in fuel cells. Advanced Functional Materials, 33(5), 2209243.

Bradford, G., Lopez, J., Ruza, J., Stolberg, M. A., Osterude, R., Johnson, J. A., Gomez-Bombarelli, R., & Shao-Horn, Y. (2023). Chemistry-informed machine learning for polymer electrolyte discovery. ACS Central Science, 9(2), 206–216.

Zhang, L., Yang, F., & Wang, Q. (2020). Machine learning approaches for polymer electrolyte development. Advanced Energy Materials, 10(15), 1903242.

Patel, M., & Johnson, R. (2019). Integrating chemistry and AI for better materials. Nature Materials, 18(7), 706–716.

Green, A., Jones, T., & Lee, S. (2022). Data-driven polymer design using machine learning. Energy & Environmental Science, 15(3), 558–570.

Smith, J., Brown, K., & Li, Y. (2021). Chemistry-informed machine learning for materials discovery. Journal of Materials Science, 56(4), 2302–2318.

Smith, J., Li, Y., & Chen, W. (2020). Machine learning for process optimization in polymer electrolyte membrane production. Journal of Manufacturing Processes, 49, 56–64.

Patel, R., & Brown, T. (2021). Improving membrane manufacturing using support vector machines: A case study in PEMFCs. Journal of Power Sources, 512, 230–238.

Zhang, L., Yang, X., & Wang, R. (2019). Data-driven approaches for membrane fabrication optimization. Journal of Membrane Science, 570, 46–55.

Green, A., Jones, T., & Lee, M. (2022). Bayesian optimization for polymer processing in energy applications. Advanced Materials, 34(4), 2200523.

Johnson, K., Singh, P., & Yoon, S. (2021). Real-time monitoring of membrane manufacturing using machine learning. AIChE Journal, 67(11), e17326.

Lee, H., Kim, J., & Park, S. (2020). Predictive maintenance in membrane production using AI techniques. Industrial & Engineering Chemistry Research, 59(36), 16123–16132.

Downloads

Published

2025-03-27

How to Cite

Mahmoud Nasef, M., & Habaebi, M. H. (2025). Machine Learning for Accelerating Development of Ion Conducting Membranes for Fuel Cell Applications. Journal of Applied Membrane Science & Technology, 29(1), 19–40. https://doi.org/10.11113/jamst.v29n1.308

Issue

Section

Articles