Photocatalytic Membranes for Organic Pollutants Removal from Water and Wastewater: A Review

Authors

  • K. I. Ikrari ᵃAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • W. N. W. Salleh ᵃAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia https://orcid.org/0000-0002-8212-3893
  • H. Hasbullah ᵃAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • K. Nakagawa Graduate School of Science, Technology and Innovation, Research Center for Membrane and Film Technology, Kobe University, Nada, Kobe 657-8501, Japan
  • T. Yoshioka Graduate School of Science, Technology and Innovation, Research Center for Membrane and Film Technology, Kobe University, Nada, Kobe 657-8501, Japan
  • H. Matsuyama Graduate School of Science, Technology and Innovation, Research Center for Membrane and Film Technology, Kobe University, Nada, Kobe 657-8501, Japan

DOI:

https://doi.org/10.11113/amst.v28n1.280

Keywords:

Photocatalyst, photocatalytic membrane, photodegradation, wastewater treatment

Abstract

The insufficient removal of organic pollutants obstacles the reclamation of wastewater and threatens water security. Photocatalytic membrane, a hybrid water treatment method by integrating photocatalysis with membrane filtration, has drawn considerable attention in the removal of organic pollutants from various sources of wastewater such as textile industries, palm oil mill effluent, sewage, and industrial wastewater. This review consolidates the recent advances in the application of photocatalytic membranes for the removal of organic pollutants from contaminated water. Various types of polymer-based photocatalytic membranes and TiO2-based photocatalytic membranes have been reviewed. Strategies to enhance the photocatalytic activity by implementation of different immobilization methods for fabricating photocatalytic membranes are also addressed. Furthermore, the applications of typical TiO2-based photocatalytic membranes and key factors affecting organic pollutants removal are discussed based on the literature database. Overall, utilization of the photocatalytic membrane presents a promising approach towards the development of an effective photocatalyst and membrane performance in simultaneous process.

References

S. Riaz and S. Park. (2020). An overview of TiO2 -based photocatalytic membrane reactors for water and wastewater treatments. J. Ind. Eng. Chem., 84, 23-41. Doi: 10.1016/j.jiec.2019.12.021.

J. Y. Chin, A. L. Ahmad, and S. C. Low. (2023). Evolution of photocatalytic membrane for antibiotics degradation: Perspectives and insights for sustainable environmental remediation. J. Water Process Eng.,. 51(October), 103342. Doi: 10.1016/j.jwpe.2022.103342.

M. Binazadeh, J. Rasouli, S. Sabbaghi, S. M. Mousavi, S. A. Hashemi, and C. W. Lai. (2023). An overview of photocatalytic membrane degradation development. Materials (Basel)., 16(9). Doi: 10.3390/ma16093526.

M. N. Chong, B. Jin, C. W. K. Chow, and C. Saint. (2010). Recent developments in photocatalytic water treatment technology : A review. Water Res., 44(10), 2997-3027. Doi: 10.1016/j.watres.2010.02.039.

W. S. Koe, J. W. Lee, and W. C. Chong. (2019). An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane. Colloid Interface Sci. J.

S. Leong, A. Razmjou, K. Wang, K. Hapgood, X. Zhang, and H. Wang. (2014). TiO2 based photocatalytic membranes : A review. 472, 167-184. Doi: 10.1016/j.memsci.2014.08.016.

Y. Shi, J. Huang, G. Zeng, W. Cheng, and J. Hu. (2019). Photocatalytic membrane in water purification : Is it stepping closer to be driven by visible light ? J. Memb. Sci., 584(May), 364-392. Doi: 10.1016/j.memsci.2019.04.078.

S. Dekkouche, S. Morales-torres, A. R. Ribeiro, J. L. Faria, M. T. Silva, and L. (2021). Proc. In situ growth and crystallization of TiO2 on polymeric membranes for the photocatalytic degradation of diclofenac and 17 α -ethinylestradiol audia Font a. Chem. Eng. J., 427(February). Doi: 10.1016/j.cej.2021.131476.

S. Bhattacharyya, C. Algieri, M. Davoli, V. Calabrò, and S. Chakraborty. (2023). Polymer-based TiO2 membranes: An efficient route for recalcitrant dye degradation. Chem. Eng. Res. Des.,. 193, 641-648. Doi: 10.1016/j.cherd.2023.04.018.

X. Feng, R. Long, C. Liu, and X. Liu. (2023). Novel dual-heterojunction photocatalytic membrane reactor based on Ag2S/NH2-MIL-88B(Fe)/poly(aryl ether nitrile) composite with enhanced photocatalytic performance for wastewater purification. Chem. Eng. J., 454(P1), 139765. Doi: 10.1016/j.cej.2022.139765.

C. J. Wu et al. (2023). Removal of tetracycline by a photocatalytic membrane reactor with MIL-53(Fe)/PVDF mixed-matrix membrane. Chem. Eng. J., 451(P4), 138990. Doi: 10.1016/j.cej.2022.138990.

S. S. Chin, K. Chiang, and G. F. Anthony. (2006). The stability of polymeric membranes in a TiO2 photocatalysis process. J. Memb. Sci., 275, 202-211. Doi: 10.1016/j.memsci.2005.09.033.

H. Zangeneh, A. A. Zinatizadeh, S. Zinadini, M. Feyzi, and D. W. Bahnemann. (2018). A novel photocatalytic self-cleaning PES nanofiltration membrane incorporating triple metal-nonmetal doped TiO2 (K-B-N-TiO2) for post treatment of biologically treated palm oil mill effluent. React. Funct. Polym., 127(March), 139-152. Doi: 10.1016/j.reactfunctpolym.2018.04.008.

A. T. Kuvarega, N. Khumalo, D. Dlamini, and B. B. Mamba. (2018). Separation and Puri fi cation Technology Polysulfone / N , Pd co-doped TiO2 composite membranes for photocatalytic dye degradation. Sep. Purif. Technol., 191(July), 122-133. Doi: 10.1016/j.seppur.2017.07.064.

K. P. Gopinath, N. V. Madhav, A. Krishnan, R. Malolan, and G. Rangarajan. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. J. Environ. Manage., 270(March), 110906. Doi: 10.1016/j.jenvman.2020.110906.

G. Elango and S. M. Roopan. (2016). Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol., B Biol., 155, 34-38. Doi: 10.1016/j.jphotobiol.2015.12.010

K. Pikula et al. (2020). Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species. Environ. Res., 186(April), 109513. Doi: 10.1016/j.envres.2020.109513.

S. Kumaravel et al., 2023. Detoxification of harmful pollutants using highly efficient visible light active Ru/TiO2/PVDF photocatalytic membranes, Mater. Res. Bull., 167(March), 112421. Doi: 10.1016/j.materresbull.2023.112421.

S. Liu, E. Véron, S. Lotfi, K. Fischer, A. Schulze, and A. I. Schäfer. (2023). Poly(vinylidene fluoride) membrane with immobilized TiO2 for degradation of steroid hormone micropollutants in a photocatalytic membrane reactor. J. Hazard. Mater., 447(January), Doi: 10.1016/j.jhazmat.2023.130832.

F. Damavandi, A. Aroujalian, and P. Salimi. (2023). TiO2 nanoparticle stability via polyacrylic acid-binding on the surface of polyethersulfone membrane: Long-term evaluation. J. Ind. Eng. Chem., 117, 307-318. Doi: 10.1016/j.jiec.2022.10.019.

J. Méricq, J. Mendret, S. Brosillon, and C. Faur. (2015). High performance PVDF-TiO2 membranes for water treatment. Chem. Eng. Sci., 123, 283-291. Doi: 10.1016/j.ces.2014.10.047.

A. Rahimpour, M. Jahanshahi, B. Rajaeian, and M. Rahimnejad. (2011). TiO2 entrapped nano-composite PVDF/SPES membranes : Preparation, characterization, antifouling and antibacterial properties. Desalination, 278(1-3), 343-353. Doi:10.1016/j.desal.2011.05.049.

A. Rahimpour, S. S. Madaeni, A. H. Taheri, and Y. Mansourpanah. (2008). Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes. J. Memb. Sci., 313(1-2), 158-169. Doi: 10.1016/j.memsci.2007.12.075.

S. Chakraborty et al. (2017). Photocatalytic hollow fiber membranes for the degradation of pharmaceutical compounds in wastewater. J. Environ. Chem. Eng., 5(5), 5014-5024. Doi: 10.1016/j.jece.2017.09.038.

B. Xu et al. (2020). Electrospinning preparation of PAN/TiO2/PANI hybrid fiber membrane with highly selective adsorption and photocatalytic regeneration properties. Chem. Eng. J., 399(May), 125749. Doi: 10.1016/j.cej.2020.125749.

K. Fischer, R. Gläser, and A. Schulze. (2014). Nanoneedle and nanotubular titanium dioxide- PES mixed matrix membrane for photocatalysis. Appl. Catal. B Environ., 160-161(1), 456-464. Doi:10.1016/j.apcatb.2014.05.054.

N. A. M. Nor et al. (2016). Preparation and performance of PVDF-based nanocomposite membrane consisting of TiO2 nanofibers for organic pollutant decomposition in wastewater under UV irradiation. Desalination, 391, 89-97. Doi: 10.1016/j.desal.2016.01.015.

R. Molinari, C. Lavorato, and P. Argurio. (2020). Visible-light photocatalysts and their perspectives various liquid phase chemical conversions. Catalysts, i, 1-38.

R. Molinari, C. Lavorato, and P. Argurio. (2016). Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review. Catal. Today. Doi: 10.1016/j.cattod.2016.06.047.

P. Argurio, E. Fontananova, R. Molinari, and E. Drioli. (2018). Photocatalytic membranes in photocatalytic membrane reactors. Processes, 6. Doi: 10.3390/pr6090162.

Z. G. Zhang et al. (2019). One-step low temperature hydrothermal synthesis of flexible TiO2 /PVDF@MoS 2 core-shell heterostructured fibers for visible-light-driven photocatalysis and self-cleaning. Nanomaterials, 9(3), 1-22. Doi: 10.3390/nano9030431.

S. Sakarkar, S. Muthukumran, and V. Jegatheesan. (2020). Factors affecting the degradation of remazol turquoise blue (RTB) dye by titanium dioxide (TiO2) entrapped photocatalytic membrane. J. Environ. Manage., 272(April), 111090. Doi: 10.1016/j.jenvman.2020.111090.

C. W. Lai, S. Sreekantan, E. Pei San, and W. Krengvirat. (2012). Preparation and photoelectrochemical characterization of WO 3-loaded TiO2 nanotube arrays via radio frequency sputtering. Electrochim. Acta, 77, 128-136. Doi:10.1016/j.electacta.2012.05.092.

S. Mozia and A. W. Morawski. (2012). The performance of a hybrid photocatalysis–MD system for the treatment of tap water contaminated with ibuprofen. Catal. Today, 193(1), 213-220. Doi: https://doi.org/10.1016/j.cattod.2012.03.016.

S. Sakarkar, S. Muthukumaran, and V. Jegatheesan. (2020). Evaluation of polyvinyl alcohol (PVA) loading in the PVA/titanium dioxide (TiO2) thin film coating on polyvinylidene fluoride (PVDF) membrane for the removal of textile dyes. Chemosphere, 257, 127144. Doi: 10.1016/j.chemosphere.2020.127144.

Z. Dohcevic-Mitrovic et al. (2016). WO3/TiO2 composite coatings: Structural, optical and photocatalytic properties. Mater. Res. Bull., 83, 217-224. Doi: 10.1016/j.materresbull.2016.06.011.

M. Romay, N. Diban, M. J. Rivero, A. Urtiaga, and I. Ortiz. (2020). Critical issues and guidelines to improve the performance of photocatalytic polymeric membranes. Catalysts, 10(5). Doi: 10.3390/catal10050570.

W. Wang and H. Sun. (2020). Effect of different forms of nano-ZnO on the properties of PVDF/ZnO hybrid membranes. J. Appl. Polym. Sci., 137(36), 1-14. Doi: 10.1002/app.49070.

Downloads

Published

2024-03-28

How to Cite

Ikrari, K. I., Salleh, W. N. W., Hasbullah, H., Nakagawa, K., Yoshioka, T., & Matsuyama, H. (2024). Photocatalytic Membranes for Organic Pollutants Removal from Water and Wastewater: A Review . Journal of Applied Membrane Science & Technology, 28(1), 1–13. https://doi.org/10.11113/amst.v28n1.280

Issue

Section

Articles