Enhancing Contaminant Removal in Sewage Treatment Plant Effluent with PES/Ag Membrane


  • F. W. Lee Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sg. Long, Bandar Sg. Long, Cheras, 43000, Kajang, Selangor, Malaysia
  • K. P. Wai Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sg. Long, Bandar Sg. Long, Cheras, 43000, Kajang, Selangor, Malaysia
  • C. H. Koo Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sg. Long, Bandar Sg. Long, Cheras, 43000, Kajang, Selangor, Malaysia




E. coli removal, sewage treatment plant effluent, membrane filtration, polyethersulfone, silver nanoparticle


In this study, a silver-infused membrane was fabricated using an ex-situ method that involved blending silver nanoparticles (AgNPs) with Polyethersulfone (PES) as the base polymer in treating sewage treatment plant (STP) effluent. Three distinct membranes denoted as S1(Ag0), S2(Ag0.5) and S3(Ag2.0) were manufactured with varying weight percentages of polymer and silver (Ag) contents. The objective was to investigate the effect of the dosage of AgNPs on membrane characterization and performance, encompassing pure water flux filtration tests, organic rejection tests, and antibacterial properties. The results showed that all PES/Ag membranes demonstrated robust performance in removing total suspended solids (TSS), chemical oxygen demand (COD), apparent colour (Hazen unit), total dissolved solids (TDS), turbidity, conductivity, total Kjeldahl nitrogen (TKN), and Escherichia coli (E. coli), complying to Class IIB (Recreational use with body contact) of the Interim National River Water Quality Standards (INWQS) for Malaysia ruled by the Department of Environment Malaysia (DOE). The results also highlighted that upon the addition of AgNPs, the E. coli removal of the membrane S3(Ag2.0) was further improved to 99.87%. The results have evidenced that the PES/Ag membranes could reject E. coli effectively, proving their value in treating bacteria-contaminated surface water. In conclusion, this study highlights the effectiveness of PES/Ag membranes as a viable solution for domestic sewage treatment, aligning with stringent water quality requirements.


K. Y. Bell, M. J. M. Wells, K. A. Traexler, M. -L. Pellegrin, A. Morse, and J. Bandy. (2011). Emerging Pollutants. Water Environ. Res., 83(10), 1906-1984. Doi: 10.2175/106143011X13075599870298.

G. T. Ballet, A. Hafiane, and M. Dhahbi. (2007). Influence of operating conditions on the retention of phosphate in water by nanofiltration. J. Memb. Sci., 290(1), 164-172. Doi: 10.1016/j.memsci.2006.12.046.

I. Zinicovscaia. (2016). Conventional Methods of Wastewater Treatment. In: Zinicovscaia, I., Cepoi, L. (Eds). Cyanobacteria for Bioremediation of Wastewaters. Springer, Cham. Doi: 10.1007/978-3-319-26751-7_3.

Y. Li, X. Nan, D. Li, L. Wang, R. Xu, and Q. Li. (2021). Advances in the treatment of phosphorus-containing wastewater. IOP Conf. Ser. Earth Environ. Sci., 647(1), 012163. IOP Publishing. Doi: 10.1088/1755-1315/647/1/012163.

C. Sommariva, A. Converti, and M. Del Borghi. (1997). Increase in phosphate removal from wastewater by alternating aerobic and anaerobic conditions. Desalination, 108(1-3), 255-260. Doi: 10.1016/s0011-9164(97)00033-7.

DOE. (2020). Department of Environment. Malaysia: Environmental Quality Report, Ministry of Environment and Water, Putrajaya, Malaysia. Annex. 171-175. https://enviro2.doe.gov.my/ekmc/wp-content/uploads/2021/09/EQR-2020-1.pdf (accessed 15 Jan 2024).

D. Dolar, K. Košutić, and B. Vučić. (2011). RO/NF treatment of wastewater from fertilizer factory - removal of fluoride and phosphate. Desalination, 265(1-3), 237-241. Doi: 10.1016/j.desal.2010.07.057.

M. Mänttäri, A. Pihlajamäki, and M. Nyström. (2006). Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. J. Memb. Sci., 280, 311-320. Doi: 10.1016/j.memsci.2006.01.034.

A. A. Izadpanah, and A. Javidnia. (2012). The ability of a nanofiltration membrane to remove hardness and ions from diluted seawater. Water, 4(1-2), 283-294. Doi: 10.3390/w4020283.

T. Nguyen, F. A. Roddick, and L. Fan. (2012). Biofouling of water treatment membranes: A Review of the underlying causes, monitoring techniques and control measures. Membranes (Basel), 2(4), 804-840. Doi: 10.3390/membranes2040804.

A. W. Mohammad, Y. H. Teow, W. L. Ang, Y. T. Chung, D. L. Oatley-Radcliffe, and N. Hilal. (2015). Nanofiltration membranes review: Recent advances and future prospects. Desalination, 356, 226-254. Doi: 10.1016/j.desal.2014.10.043.

W. Sun, J. Liu, H. Chu, and B. Dong. (2013). Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes (Basel), 3(3), 226-241. Doi: 10.3390/membranes3030226.

H. K. Shon, S. Vigneswaran, I. S. Kim, J. Cho, and H. H. Ngo. (2004). Effect of pretreatment on the fouling of membranes: application in biologically treated sewage effluent. J. Memb. Sci., 234(1-2), 111-120. Doi: 10.1016/j.memsci.2004.01.015.

G. Artuğ, I. Roosmasari, K. Richau, and J. Hapke. (2007). A comprehensive characterization of commercial nanofiltration membranes. Sep. Sci. Technol., 42(13), 2947-2986. Doi: 10.1080/01496390701560082.

B. Van der Bruggen. (2009). Chemical modification of polyethersulfone nanofiltration membranes: A review. J. Appl. Polym. Sci., 114(1), 630-642. Doi: 10.1002/app.30578.

V. Vatanpour, S. S. Madaeni, A. R. Khataee, E. Salehi, S. Zinadini, and H. A. Monfared. (2012). TiO2 embedded mixed matrix PES nanocomposite membranes: Influence of different sizes and types of nanoparticles on antifouling and performance. Desalination, 292, 19-29. Doi: 10.1016/j.desal.2012.02.006.

S. Zinadini, A. A. Zinatizadeh, M. Rahimi, V. Vatanpour, and H. Zangeneh. (2014). Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates. J. Memb. Sci., 453, 292-301. Doi: 10.1016/j.memsci.2013.10.070.

V. Vatanpour, S. S. Madaeni, L. Rajabi, S. Zinadini, and A. A. Derakhshan. (2012). Boehmite nanoparticles as a new nanofiller for preparation of antifouling mixed matrix membranes. J. Memb. Sci., 401-402, 132-143. Doi: 10.1016/j.memsci.2012.01.040.

S. Ren, N. Guo, J. Li, and Y. Wang. (2023). Integration of antibacterial and photocatalysis onto polyethersulfone membrane for fouling mitigation and contaminant degradation. J. Environ. Chem. Eng., 11(5), 110401. Doi: 10.1016/j.jece.2023.110401.

H. Wu, J. Mansouri, and V. Chen. (2013). Silica nanoparticles as carriers of antifouling ligands for PVDF ultrafiltration membranes. J. Memb. Sci., 433, 135-151. Doi: 10.1016/j.memsci.2013.01.029.

K. P. Wai, C. H. Koo, W. C. Chong, S. O. Lai, Y. L. Pang. (2018). Improving hydrophilicity of polyethersulfone membrane using silver nanoparticles for humic substances removal. Int. J. Eng. Trans. B: Appl., 31(8), 1364-1372. Doi: 10.5829/ije.2018.31.08b.27.

E. Abdulkarem, Y. Ibrahim, V. Naddeo, F. Banat, and S. W. Hasan. (2020). Development of polyethersulfone/α-zirconium phosphate (PES/α-ZrP) flat-sheet nanocomposite ultrafiltration membranes. Chem. Eng. Res. Des., 161, 206-217.

S. Mokhtari, A. Rahimpour, A.A. Shamsabadi, S. Habibzadeh, and M. Soroush. (2017). Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles. Appl. Surf. Sci., 393, 933-102. Doi: 10.1016/j.apsusc.2016.10.005.

H. Basri, A. F. Ismail, and M. Aziz. (2011). Polyethersulfone (PES)–silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination, 273(1), 72-80. Doi: 10.1016/j.desal.2010.11.010.

C. H. Koo, A. W. Mohammad, and F. Suja’. (2015). Effect of cross-flow velocity on membrane filtration performance in relation to membrane properties. Desalin. Water Treat., 55(3), 678-692. Doi: 10.1080/19443994.2014.953594.

S. Acarer. (2022). Effect of different solvents, pore-forming agent and solubility parameter differences on the properties of PES ultrafiltration Mmembrane. Sakarya University J. Sci., 26(6), 1196-1208. Doi:10.16984/saufenbilder.1135285.

K. P. Wai, C. H. Koo, Y. L. Pang, W. C. Chong, and W. J. Lau. (2020). In situ immobilization of silver on polydopamine-coated composite membrane for enhanced antibacterial properties. J. Water Process Eng., 33, 100989. Doi: 10.1016/j.jwpe.2019.100989.

A. Mollahosseini, A. Rahimpour, M. Jahamshahi, M. Peyravi, and M. Khavarpour. (2012). The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane. Desalination, 306, 41-50. Doi: 10.1016/j.desal.2012.08.035.

K. P. Wai, C. H. Koo, Y. L. Pang, W. C. Chong, and W. J. Lau. (2023). Purifying surface waters contaminated with natural organic matters and bacteria using Ag/PDA-coated PES membranes. Environ. Eng. Res., 28(6), 220090-220097. Doi: 10.4491/eer.2022.097.

P. F. Andrade, A. F. de Faria, S. R. Oliveira, M. A. Z. Arruda, and C. Goncalves Mdo. (2015). Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles. Water Res., 81, 333-342. Doi: 10.1016/j.watres.2015.05.006.

R. L. Davies, and S. F. Etris. (1997). The development and functions of silver in water purification and disease control. Catal. Today, 36(1), 107-114. Doi: 10.1016/S0920-5861(96)00203-9.

J. T. Trevors. (1987). Survival of Escherichia coli donor, recipient, and transconjugant cells in soil. Water Air Soil Pollut., 34, 4093-414. Doi: 10.1007/BF00282741.




How to Cite

Lee, F. W., Wai, K. P., & Koo, C. H. (2024). Enhancing Contaminant Removal in Sewage Treatment Plant Effluent with PES/Ag Membrane. Journal of Applied Membrane Science & Technology, 28(1), 15–26. https://doi.org/10.11113/amst.v28n1.282