Grand Challenges in Fabrication of Nanocomposite Hollow Fiber Membranes

Authors

  • M. N. Subramaniam Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, United Kingdom
  • Z. Wu Energy and Bioproducts Research Institute (EBRI), Aston University, Birmingham, United Kingdom

DOI:

https://doi.org/10.11113/amst.v26n3.251

Keywords:

Hollow fiber membranes, nanocomposite membranes, nanomaterials, separation process

Abstract

Membrane processes allow scalable and energy-efficient separation of gas and liquid, advance low-carbon purifications in various industrial and environmental applications and enable more resilient economy and society. In pursuit of developing more advanced membranes with continuously improved separating performances, nanofillers have been commonly incorporated into membranes to upgrade membrane properties such as mechanical robustness, antifouling ability, and permeability etc., across all types of popular membrane geometries from flat sheet and spiral wound to hollow fiber. Nanofillers inside hollow fibre membranes have received more attentions due to the unique structural advantages such as a large surface area/volume ratio and compact module designs. The resultant nanocomposite hollow fiber membranes thus combine the structural superiority with specific functions of nanomaterials such as superhydrophilicity or catalytic activity, whereas the development of dual layer hollow fiber membrane allowed further design of both the inner and outer membrane layers with innovative functions. On the other hand, greener and more environmentally friendly membranes fabrication are increasingly important to sustainable membrane technology, for example topics of using natural polymers, solvent free membrane fabrication and nano-pollutions are fervently investigated.

References

C. P. M. de Oliveira, I. Fernandes Farah, K. Koch, J. E. Drewes, M. M. Viana, M. C. S. Amaral. 2022. TiO2-Graphene Oxide Nanocomposite Membranes: A Review. Sep. Purif. Technol. 280: 119836. https://doi.org/https://doi.org/10.1016/j.seppur.2021.119836.

O. Agboola, O. S. I. Fayomi, A. Ayodeji, A. O. Ayeni, E. E. Alagbe, S. E. Sanni, E. E. Okoro, L. Moropeng, R. Sadiku, K.W. Kupolati, B. A. Oni. 2021. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes (Basel). 11. https://doi.org/10.3390/membranes11020139.

E. O. Ezugbe, S. Rathilal. 2020. Membrane Technologies in Wastewater Treatment: A Review. Membranes (Basel). 10. https://doi.org/10.3390/membranes10050089.

Hollow Fiber Membrane Market Share and Statistics - 2026. (n.d.). https://www.gminsights.com/industry-analysis/hollow-fiber-membranes-market (accessed September 29, 2022).

T. Wu, F. Moghadam, K. Li. 2022. High-performance Porous Graphene Oxide Hollow Fiber Membranes with Tailored Pore Sizes for Water Purification. J. Memb. Sci. 645: 120216. https://doi.org/https://doi.org/10.1016/j.memsci.2021.120216.

T. Zheng, X. Zou, M. Li, S. Zhou, Y. Zhao, Z. Zhong. 2022. Two-dimensional Graphitic Carbon Nitride for Membrane Separation. Chinese J. Chem. Eng. 42: 297-311. https://doi.org/https://doi.org/10.1016/j.cjche.2021.01.011.

G. Li, W. Kujawski, K. Knozowska, J. Kujawa. 2021. Thin Film Mixed Matrix Hollow Fiber Membrane Fabricated by Incorporation of Amine Functionalized Metal-Organic Framework for CO2/N2 Separation. Materials (Basel). 14: 3366. https://doi.org/10.3390/ma14123366.

J. Liu, Y. Chen, T. Han, M. Cheng, W. Zhang, J. Long, X. Fu. 2019. A Biomimetic SiO2@chitosan Composite as Highly-efficient Adsorbent for Removing Heavy Metal Ions in Drinking Water. Chemosphere. 214: 738-742. https://doi.org/10.1016/j.chemosphere.2018.09.172.

H. Zangeneh, A. A. Zinatizadeh, S. Zinadini, M. Feyzi, D. W. Bahnemann. 2019. Preparation and Characterization of a Novel Photocatalytic Self-cleaning PES Nanofiltration Membrane by Embedding a Visible-driven Photocatalyst Boron Doped-TiO2–SiO2/CoFe2O4 Nanoparticles. Sep. Purif. Technol. 209: 764-775. https://doi.org/10.1016/j.seppur.2018.09.030.

M.-T. Vu, G. M. Monsalve-Bravo, R. Lin, M. Li, S. K. Bhatia, S. 2021. Smart, Mitigating the Agglomeration of Nanofiller in a Mixed Matrix Membrane by Incorporating an Interface Agent. Membr. 11. https://doi.org/10.3390/membranes11050328.

M. Sadeghi, A. Arabi Shamsabadi, A. Ronasi, A. P. Isfahani, M. Dinari, M. Soroush. 2018. Engineering the Dispersion of Nanoparticles in Polyurethane Membranes to Control Membrane Physical and Transport Properties. Chem. Eng. Sci. 192: 688-698. https://doi.org/https://doi.org/10.1016/j.ces.2018.08.030.

S. Robinson, S. Z. Abdullah, P. Bérubé, P. Le-Clech. 2016. Ageing of Membranes for Water Treatment: Linking Changes to Performance. J. Memb. Sci. 503: 177-187. https://doi.org/https://doi.org/10.1016/j.memsci.2015.12.033.

L. Grünig, U. A. Handge, J. Koll, O. Gronwald, M. Weber, B. Hankiewicz, N. Scharnagl, V. Abetz. 2020. Hydrophilic Dual Layer Hollow Fiber Membranes for Ultrafiltration. Membr. 10. https://doi.org/10.3390/membranes10070143.

N. Yaacob, P. S. Goh, A. F. Ismail, N. A. M. Nazri, B.C. Ng, M. N. Z. Abidin, L. T. Yogarathinam. 2020. ZrO2–TiO2 Incorporated PVDF Dual-layer Hollow Fiber Membrane for Oily Wastewater Treatment: Effect of Air Gap. Membranes (Basel). 10: 1-18. https://doi.org/10.3390/membranes10060124.

Z.-Y. Wang, Y.-C. Wang, W.-J. Wang, S.-N. Tao, Y.-F. Chen, M. Tang, D.-D. Shao, W. Xing, S.-P. Sun. 2021. Designing scalable Dual-layer Composite Hollow Fiber Nanofiltration Membranes with Fully Cross-linked Ultrathin Functional Layer. J. Memb. Sci. 628: 119243. https://doi.org/https://doi.org/10.1016/j.memsci.2021.119243.

Y. Huang, C. Xiao, Q. Huang, H. Liu, J. Zhao. 2021. Progress on Polymeric Hollow Fiber Membrane Preparation Technique from the Perspective of Green and Sustainable Development. Chem. Eng. J. 403: 126295. https://doi.org/https://doi.org/10.1016/j.cej.2020.126295.

C. Su, C. Lu, H. Cao, F. Gao, J. Chang, Y. Li, C. He. 2017. Fabrication of a Novel Nanofibers-covered Hollow Fiber Membrane via Continuous Electrospinning with Non-rotational Collectors. Mater. Lett. 204: 8-11. https://doi.org/10.1016/j.matlet.2017.05.134.

M. Toriello, M. Afsari, H. K. Shon, L. D. Tijing. 2020. Progress on the Fabrication and Application of Electrospun Nanofiber Composites. Membranes (Basel). 10: 1-35. https://doi.org/10.3390/membranes10090204.

R. Castro-Muñoz, J. González-Valdez. 2019. New Trends in Biopolymer-Based Membranes for Pervaporation. Molecules. 24. https://doi.org/10.3390/molecules24193584.

Downloads

Published

2022-11-20

How to Cite

Subramaniam , M. N. ., & Wu , Z. . (2022). Grand Challenges in Fabrication of Nanocomposite Hollow Fiber Membranes. Journal of Applied Membrane Science & Technology, 26(3), 37–43. https://doi.org/10.11113/amst.v26n3.251

Issue

Section

Articles