Grand Challenges in Membrane Distillation for Desalination and Water Recovery

Authors

  • Noel Jacob Kaleekkal Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, Kerala-673601, India
  • Juliana John Membrane Separation Group, Department of Chemical Engineering, National Institute of Technology Calicut (NITC), Kozhikode, Kerala-673601, India

DOI:

https://doi.org/10.11113/amst.v26n3.249

Keywords:

Membrane distillation, hydrophobicity, configuration, wetting, energy efficiency

Abstract

Seawater desalination and water recovery from wastewater are potential solutions to meet the ever-growing water demand. Membrane distillation (MD) is a next-generation membrane technology that can be harnessed for sustainable water production. The advantages of the MD process and the various operating configurations are discussed. The challenges in membrane development are highlighted, and the various state-of-the-art approaches for improving membrane performance, fouling resistance, anti-wetting character, and minimizing concentration/temperature polarisations are included. The process design is another crucial aspect of the successful implementation of the MD. Response surface methodology and Analysis of Variance (ANOVA) have been explored to identify the optimal operating conditions. Machine learning and computational fluid dynamics analysis (CFD) that have been used to predict the performance and influence of the process parameters are discussed. The energetics and economics of the MD process have also been discussed. The MD process could become sustainable if it utilizes renewable energy sources (solar, geothermal) for bulk heating of the feed. This article highlights the various challenges associated with MD technology and provides an overview of the strategies researched to overcome them. 

References

González, D., Amigo, J., Suárez, F. 2017. Membrane Distillation: Perspectives for Sustainable and Improved Desalination. Renew Sustain Energy Rev. 80: 238-259. https://doi.org/10.1016/j.rser.2017.05.078.

El-Bourawi, M. S., Ding, Z., Ma, R., Khayet, M. 2006. A Framework for Better Understanding Membrane Distillation Separation Process. J. Memb. Sci. 285(1-2): 4-29. https://doi.org/10.1016/j.memsci.2006.08.002.

Amaya-Vías, D., Nebot, E., López-Ramírez, J. A. 2018. Comparative Studies of Different Membrane Distillation Configurations and Membranes for Potential Use on Board Cruise Vessels. Desalination. 429: 44-51. https://doi.org/10.1016/j.desal.2017.12.008.

Leaper, S., Abdel-Karim, A., Gad-Allah, T. A., Gorgojo, P. 2019. Air-gap Membrane Distillation as a One-step Process for Textile Wastewater Treatment. Chem. Eng. J. 360: 1330-1340. https://doi.org/10.1016/j.cej.2018.10.209.

Abdel-Karim, A., Leaper, S., Skuse, C., et al. 2021. Membrane Cleaning and Pretreatments in Membrane Distillation – A Review. Chem. Eng. J. 422. https://doi.org/10.1016/j.cej.2021.129696.

Yang, S., Abdalkareem Jasim, S., Bokov, D., et al. 2022. Membrane Distillation Technology for Molecular Separation: A Review on the Fouling, Wetting and Transport Phenomena. J Mol Liq. 349. https://doi.org/10.1016/j.molliq.2021.118115.

Luo, A., Lior, N. 2016. Critical Review of Membrane Distillation Performance Criteria. Desalin Water Treat. 57: 20093-20140. https://doi.org/10.1080/19443994.2016.1152637.

Vishnu, B., Sriramani, M., Rivin, M., Kumar, T. K. H., Kaleekkal, N. J. 2022. Electrospun Nanofibrous Membranes for Membrane Distillation Process. Nano-enabled Technologies For Water Remediation. 215-261. https://doi.org/10.1016/B978-0-323-85445-0.00014-X.

Eykens. L., De Sitter, K., Dotremont, C., et al. 2016. Characterization and Performance Evaluation of Commercially Available Hydrophobic Membranes for Direct Contact Membrane Distillation. Desalination. 392: 63-73. https://doi.org/10.1016/j.desal.2016.04.006.

Eykens, L., De Sitter, K., Dotremont, C., et al. 2018. Coating Techniques for Membrane Distillation: An Experimental Assessment. Sep Purif Technol. 193: 38-48. https://doi.org/10.1016/j.seppur.2017.10.070.

Ramlow, H., Ferreira, R. K. M., Marangoni, C., Machado, R. A. F. 2019. Ceramic Membranes Applied to Membrane Distillation: A Comprehensive Review. Int J Appl Ceram Technol. 16: 2161-2172. https://doi.org/10.1111/ijac.13301.

Tai, Z. S., Abd Aziz, M. H., Othman, M. H. D., et al. 2020. Ceramic Membrane Distillation for Desalination. Sep Purif Rev. 49: 3173-356. https://doi.org/10.1080/15422119.2019.1610975.

Ali, A., Criscuoli, A., Macedonio, F., Drioli, E. 2019. A Comparative Analysis of flat Sheet and Capillary Membranes for Membrane Distillation Applications. Desalination. 456: 1-12. https://doi.org/10.1016/j.desal.2019.01.006.

Su, C., Lu, C., Cao, H., et al. 2018. Fabrication and Post-treatment of Nanofibers-covered Hollow Fiber Membranes for Membrane Distillation. J Memb Sci. 562: 38-46. https://doi.org/10.1016/j.memsci.2018.05.027.

Tijing, L. D., Choi, J. S., Lee, S., et al. 2014. Recent Progress of Membrane Distillation using Electrospun Nanofibrous Membrane. J Memb Sci. 453: 435-462. https://doi.org/10.1016/j.memsci.2013.11.022.

Yalcinkaya, F. 2019. A Review on Advanced Nanofiber Technology for Membrane Distillation. J Eng Fiber Fabr. 14. https://doi.org/10.1177/1558925018824901.

Ali, I., Bamaga, O. A., Gzara, L., et al. 2018. Assessment of Blend PVDF Membranes, and the Effect of Polymer Concentration and Blend Composition. Membranes (Basel). 8. https://doi.org/10.3390/membranes8010013.

Khayet, M., García-Payo, C., Matsuura, T. 2019. Superhydrophobic Nanofibers Electrospun by Surface Segregating Fluorinated Amphiphilic Additive for Membrane Distillation. J Memb Sci. 588. https://doi.org/10.1016/j.memsci.2019.117215.

An, X., Liu, Z., Hu, Y. 2018. Amphiphobic Surface Modification of Electrospun Nanofibrous Membranes for Anti-wetting Performance in Membrane Distillation. Desalination. 432: 23-31. https://doi.org/10.1016/j.desal.2017.12.063.

Ray, S. S., Bakshi, H. S., Dangayach, R., et al. 2020. Recent Developments in Nanomaterials-modified Membranes for Improved Membrane Distillation Performance. Membranes (Basel). 10: 1-29. https://doi.org/10.3390/membranes10070140.

Zhu, Z., Liu, Z., Zhong, L., et al. 2018. Breathable and Asymmetrically Superwettable Janus Membrane with Robust Oil-fouling Resistance for Durable Membrane Distillation. J Memb Sci. 563: 602-609. https://doi.org/10.1016/j.memsci.2018.06.028.

Guo, J., Yan, D. Y. S., Lam, F. L. Y., et al. 2019. Self-cleaning BiOBr/Ag Photocatalytic Membrane for Membrane Regeneration under Visible Light in Membrane Distillation. Chem Eng J. 378. https://doi.org/10.1016/j.cej.2019.122137.

Deka, B. J., Guo, J., An, A. K. 2021. Robust Dual-layered Omniphobic Electrospun Membrane with Anti-wetting and Anti-scaling Functionalized for Membrane Distillation Application. J Memb Sci. 624. https://doi.org/10.1016/j.memsci.2021.119089.

Efome, J. E., Rana, D., Matsuura, T., et al. 2020. Triple-Layered Nanofibrous Metal-Organic Framework-Based Membranes for Desalination by Direct Contact Membrane Distillation. ACS Sustain Chem Eng. 8: 6601-6610. https://doi.org/10.1021/acssuschemeng.9b06791.

Ye, H., Li, X., Deng, L., et al. 2019. Silver Nanoparticle-Enabled Photothermal Nanofibrous Membrane for Light-Driven Membrane Distillation. Ind Eng Chem Res. 58: 3269-3281. https://doi.org/10.1021/acs.iecr.8b04708.

Anvari, A., Kekre, K. M., Azimi Yancheshme, A, et al. 2019. Membrane Distillation of High Salinity Water by Induction Heated Thermally Conducting Membranes. J Memb Sci. 589. https://doi.org/10.1016/j.memsci.2019.117253.

Lin, J-L., Fitria, F. L., Wang, Y-F., You, S-J. 2022. Optimization of Operational Parameters in Air-gap Membrane Distillation using Central Composite Design Applied in Recovery of Dye Manufacturing Wastewaters. Sep Sci Technol. 1-17. https://doi.org/10.1080/01496395.2022.2075390.

Idris, I., Ahmad, Z., Roslee Othman, M., et al. 2022. Application of Artificial Neural Network to Predict Water Flux from Pre-treated Palm Oil Mill Effluent using Direct Contact Membrane Distillation. Mater Today Proc. https://doi.org/10.1016/j.matpr.2022.04.084.

Zhu, Z., Tan, G., Lei, D., et al. 2021. Omniphobic Membrane with Process Optimization for Advancing Flux and Durability Toward Concentrating Reverse-osmosis Concentrated Seawater with Membrane Distillation. J Memb Sci. 639:119763. https://doi.org/10.1016/j.memsci.2021.119763.

Alsaadi, A. S., Alpatova, A., Lee, J. G., et al. 2018. Flashed-feed VMD configuration as a novel Method for Eliminating Temperature Polarization Effect and Enhancing Water Vapor Flux. J Memb Sci. 563: 175-182. https://doi.org/10.1016/j.memsci.2018.05.060.

Mustakeem, M., Qamar, A., Alpatova, A., Ghaffour, N. 2021. Dead-end Membrane Distillation with Localized Interfacial Heating for Sustainable and Energy-efficient Desalination. Water Res. 189. https://doi.org/10.1016/j.watres.2020.116584.

Zhang, P., Knötig, P., Gray, S., Duke, M. 2015. Scale Reduction and Cleaning Techniques during Direct Contact Membrane Distillation of Seawater Reverse Osmosis Brine. Desalination. 374: 20-30. https://doi.org/10.1016/j.desal.2015.07.005.

Hickenbottom, K. L., Cath, T. Y. 2014. Sustainable Operation of Membrane Distillation for Enhancement of Mineral Recovery from Hypersaline Solutions. J Memb Sci. 454: 426-435. https://doi.org/10.1016/j.memsci.2013.12.043.

Horseman, T., Yin, Y., Christie, K. S., et al. 2021. Wetting, Scaling, and Fouling in Membrane Distillation: State-of-the-Art Insights on Fundamental Mechanisms and Mitigation Strategies. ACS ES&T Eng. 1: 117-140. https://doi.org/10.1021/acsestengg.0c00025.

Christie, K. S. S., Horseman, T., Lin, S. 2020. Energy Efficiency of Membrane Distillation: Simplified Analysis, Heat Recovery, and the Use of Waste-heat. Environ Int. 138. https://doi.org/10.1016/j.envint.2020.105588.

Chan, Y. S., Ooi, B. S., Ahmad, A. L., et al. 2022. Air Bubbling Assisted Solar-Driven Submerged Vacuum Membrane Distillation for Aquaculture Seawater Desalination. SSRN Electron J. https://doi.org/10.2139/ssrn.3958020.

Najib, A., Orfi, J., Ali, E., Saleh, J. 2019. Thermodynamics Analysis of a Direct Contact Membrane Distillation with/without Heat Recovery based on Experimental Data. Desalination. 466: 52-67. https://doi.org/10.1016/j.desal.2019.05.009.

Yadav, A., Labhasetwar, P. K., Shahi, V. K. 2021. Membrane Distillation using Low-grade Energy for Desalination: A Review. J Environ Chem Eng. 9: 105818. https://doi.org/10.1016/j.jece.2021.105818.

Siefan, A., Rachid, E., Elashwah, N., et al. 2022. Desalination via Solar Membrane Distillation and Conventional Membrane Distillation: Life Cycle Assessment Case Study in Jordan. Desalination. 522. https://doi.org/10.1016/j.desal.2021.115383.

Abdelgaied, M., Seleem, M. F., Bassuoni, M. M. 2022. Recent Technological Advancements in Membrane Distillation and Solar Stills: Preheating Techniques, Heat Storage Materials, and Nanomaterials — A Detailed Review. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-022-19625-w.

Dongare, P. D., Alabastri, A., Pedersen, S., et al. 2017. Nanophotonics-enabled Solar Membrane Distillation for Off-grid Water Purification. Proc Natl Acad Sci. 114: 6936-6941. https://doi.org/10.1073/pnas.1701835114.

Downloads

Published

2022-11-20

How to Cite

Kaleekkal, N. J., & John, J. (2022). Grand Challenges in Membrane Distillation for Desalination and Water Recovery. Journal of Applied Membrane Science & Technology, 26(3), 27–36. https://doi.org/10.11113/amst.v26n3.249

Issue

Section

Articles