A Review on Mass Transport Phenomena and Factors Affecting the Performance of Thin Film Composite Membrane during Engineered Osmosis Process
DOI:
https://doi.org/10.11113/amst.v24n2.174Abstract
Engineered osmosis (EO) is an osmotically driven membrane process that takes advantage of the osmotic pressure gradient to drive water across the semi-permeable membrane from the feed solution (low osmotic pressure) to the draw solution (high osmotic pressure). In the last decade, EO membranes have found various applications in wastewater treatment, seawater/brackish desalination, food processing and power generation. In this paper, the mass transport phenomena of EO processes, driven by concentration gradients, are reviewed. It is followed by reviewing the key factors that affect the separation performance of membrane particularly thin film composite (TFC) membrane during EO operation. Some of the factors reviewed include membrane intrinsic characteristics, filtration orientation, composition of the feed and draw solutions. This mini review is of importance for researchers who would like to start the research work in the field of osmotic membrane developments.
References
Y. Zeng, L. Qiu, K. Wang, J. Yao, D. Li, G. P. Simon, R. Wang, H. Wang. 2013. Significantly Enhanced Water Flux in Forward Osmosis Desalination with Polymer-graphene Composite Hydrogels as a Draw Agent. Rsc Advances. 3: 887-894.
F. Zhang, K. S. Brastad, Z. He. 2011. Integrating Forward Osmosis into Microbial Fuel Cells for Wastewater Treatment, Water Extraction and Bioelectricity Generation. Environmental Science & Technology. 45: 6690-6696.
F. Asempour, D. Emadzadeh, T. Matsuura, B. Kruczek. 2018. Synthesis and Characterization of Novel Cellulose Nanocrystals-based Thin Film Nanocomposite Membranes for Reverse Osmosis Applications. Desalination. 439: 179-187.
R. L. McGinnis, M. Elimelech. 2007. Energy requirements of Ammonia–carbon Dioxide Forward Osmosis Desalination. Desalination. 207: 370-382.
J. R. McCutcheon, R. L. McGinnis, M. Elimelech. 2005. A Novel Ammonia—carbon Dioxide Forward (Direct) Osmosis Desalination Process. Desalination. 174: 1-11.
D. Emadzadeh, W. Lau, M. Rahbari-Sisakht, A. Daneshfar, M. Ghanbari, A. Mayahi, T. Matsuura, A. Ismail. 2015. A Novel Thin Film Nanocomposite Reverse Osmosis Membrane with Superior Anti-organic Fouling Affinity for Water Desalination. Desalination. 368: 106-113.
D. Emadzadeh, W. Lau, M. Rahbari-Sisakht, H. Ilbeygi, D. Rana, T. Matsuura, A. Ismail. 2015. Synthesis, Modification and Optimization of Titanate Nanotubes-polyamide Thin Film Nanocomposite (TFN) Membrane for Forward Osmosis (FO) Application. Chemical Engineering Journal. 281: 243-251.
D. Emadzadeh, W. J. Lau, A. F. Ismail. 2013. Synthesis of Thin Film Nanocomposite Forward Osmosis Membrane with Enhancement in Water Flux without Sacrificing Salt Rejection. Desalination. 330: 90-99.
W. Lau, A. F. Ismail, N. Misdan, M. Kassim. 2012. A Recent Progress in Thin Film Composite Membrane: A Review. Desalination. 287: 190-199.
D. Emadzadeh, W. J. Lau, T. Matsuura, A. F. Ismail, M. Rahbari-Sisakht. Provide Year? Synthesis and Characterization of Thin Film Nanocomposite Forward Osmosis Membrane with Hydrophilic Nanocomposite Support to Reduce Internal Concentration Polarization. Journal of Membrane Science.
C. A. Nayak, S. S. Valluri, N. K. Rastogi. 2011. Effect of High or Low Molecular Weight of Components of Feed on Transmembrane Flux During Forward Osmosis. Journal of Food Engineering. 106: 48-52.
M. Ghanbari, D. Emadzadeh, W. Lau, S. Lai, T. Matsuura, A. Ismail. 2015. Synthesis and Characterization of Novel Thin Film Nanocomposite (TFN) Membranes Embedded with Halloysite Nanotubes (HNTs) for Water Desalination. Desalination. 358: 33-41.
M. Ghanbari, D. Emadzadeh, W. Lau, T. Matsuura, M. Davoody, A. Ismail. 2015. Super Hydrophilic TiO 2/HNT Nanocomposites as a New Approach for Fabrication of High Performance Thin Film Nanocomposite Membranes for FO Application. Desalination. 371: 104-114.
M. Ghanbari, D. Emadzadeh, W. Lau, T. Matsuura, A. Ismail. 2015. Synthesis and Characterization of Novel Thin Film Nanocomposite Reverse Osmosis Membranes with Improved Organic Fouling Properties for Water Desalination. RSC Advances. 5: 21268-21276.
M. Ghanbari, D. Emadzadeh, W. Lau, H. Riazi, D. Almasi, A. Ismail. 2016. Minimizing Structural Parameter of Thin Film Composite Forward Osmosis Membranes Using Polysulfone/Halloysite Nanotubes as Membrane Substrates. Desalination. 377: 152-162.
W. J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J. Paul Chen, A. F. Ismail. 2015. A Review on Polyamide Thin Film Nanocomposite (TFN) Membranes: History, Applications, Challenges and Approaches. Water Research. 80: 306-324.
G.-D. Kang, C.-J. Gao, W.-D. Chen, X.-M. Jie, Y.-M. Cao, Q. Yuan. 2007. Study on Hypochlorite Degradation of Aromatic Polyamide Reverse Osmosis Membrane. Journal of Membrane Science. 300: 165-171.
A. Achilli, T. Y. Cath, A. E. Childress. 2009. Power Generation with Pressure Retarded Osmosis: An Experimental and Theoretical Investigation. Journal of Membrane Science. 343: 42-52.
D. Emadzadeh, W. Lau, T. Matsuura, N. Hilal, A. Ismail. 2014. The Potential of Thin Film Nanocomposite Membrane in Reducing Organic Fouling in Forward Osmosis Process. Desalination. 348: 82-88.
K. Lee, R. Baker, H. Lonsdale. 1981. Membranes for Power Generation by Pressure-retarded Osmosis. Journal of Membrane Science. 8: 141-171.
J. Wei, C. Qiu, C. Y. Tang, R. Wang, A. G. Fane. 2011. Synthesis and Characterization of Flat-sheet Thin Film Composite Forward Osmosis Membranes. Journal of Membrane Science. 372: 292-302.
K. Y. Wang, T. S. Chung, G. Amy. 2012. Developing Thinâ€filmâ€composite Forward Osmosis Membranes on the PES/SPSf Substrate through Interfacial Polymerization. AIChE Journal. 58: 770-781.
Y. Yu, S. Seo, I.-C. Kim, S. Lee. 2011. Nanoporous Polyethersulfone (PES) Membrane with Enhanced Flux Applied in Forward Osmosis Process. Journal of Membrane Science. 375: 63-68.
J. R. McCutcheon, M. Elimelech. 2008. Influence of Membrane Support Layer Hydrophobicity on Water Flux in Osmotically Driven Membrane Processes. Journal of Membrane Science. 318: 458-466.
A. Tiraferri, N. Y. Yip, W. A. Phillip, J. D. Schiffman, M. Elimelech. 2011. Relating Performance of Thin-film Composite Forward Osmosis Membranes to Support Layer Formation and Structure. Journal of Membrane Science. 367: 340-352.
X. Wei, Z. Wang, J. Chen, J. Wang, S. Wang. 2010. A Novel Method of Surface Modification on Thin-Film-Composite Reverse Osmosis Membrane by Grafting Hydantoin Derivative. Journal of Membrane Science. 346: 152-162.
N. Y. Yip, A. Tiraferri, W.A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, M. Elimelech. 2011. Thin-film Composite Pressure Retarded Osmosis Membranes for Sustainable Power Generation from Salinity Gradients. Environmental Science & Technology. 45: 4360-4369.
A. K. Ghosh, E. Hoek. 2009. Impacts of Support Membrane Structure and Chemistry on Polyamide–Polysulfone Interfacial Composite Membranes. Journal of Membrane Science. 336: 140-148.
B. Chakrabarty, A. Ghoshal, M. Purkait. 2008. Effect of Molecular Weight of PEG on Membrane Morphology and Transport Properties. Journal of Membrane Science. 309: 209-221.
N. Widjojo, T.-S. Chung, M. Weber, C. Maletzko, V. Warzelhan. 2011. The Role of Sulphonated Polymer and Macrovoid-free Structure in the Support Layer for Thin-film Composite (TFC) Forward Osmosis (FO) Membranes. Journal of Membrane Science. 383: 214-223.
X. Li, K.Y. Wang, B. Helmer, T.-S. Chung. 2012. Thin-film Composite Membranes and Formation Mechanism of Thin-film Layers on Hydrophilic Cellulose Acetate Propionate Substrates for Forward Osmosis Processes. Industrial & Engineering Chemistry Research. 51: 10039-10050.
D. Xiao, C.Y. Tang, J. Zhang, W. C. Lay, R. Wang, A. G. Fane. 2011. Modeling Salt Accumulation in Osmotic Membrane Bioreactors: Implications for FO Membrane Selection and System Operation. Journal of Membrane Science. 366: 314-324.
N.-N. Bui, M. L. Lind, E. Hoek, J. R. McCutcheon. 2011. Electrospun nanofiber Supported Thin Film Composite Membranes for Engineered Osmosis. Journal of Membrane Science. 385: 10-19.
L. A. Hoover, J. D. Schiffman, M. Elimelech. 2013. Nanofibers in Thin-film Composite Membrane Support Layers: Enabling expanded Application of Forward and Pressure Retarded Osmosis. Desalination. 308: 73-81.
L. Chen, L. Bromberg, J. A. Lee, H. Zhang, H. Schreuder-Gibson, P. Gibson, J. Walker, P. T. Hammond, T. A. Hatton, G. C. Rutledge. 2010. Multifunctional Electrospun Fabrics Via Layer-by-Layer Electrostatic Assembly for Chemical and Biological Protection. Chemistry of Materials. 22: 1429-1436.
L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, P. Moulin. 2009. Reverse Osmosis Desalination: Water Sources, Technology, and Today's Challenges. Water Research. 43: 2317-2348.
J. Wei, X. Liu, C. Qiu, R. Wang, C. Y. Tang. 2011. Influence of Monomer Concentrations on the Performance of Polyamide-based Thin Film Composite Forward Osmosis Membranes. Journal of Membrane Science. 381: 110-117.
S. Sablani, M. Goosen, R. Al-Belushi, M. Wilf. 2001. Concentration Polarization in Ultrafiltration and Reverse Osmosis: A Critical Review. Desalination. 141: 269-289.
S. Loeb, L. Titelman, E. Korngold, J. Freiman. 1997. Effect of Porous Support Fabric on Osmosis through a Loeb-Sourirajan Type Asymmetric Membrane. Journal of Membrane Science. 129: 243-249.
J. R. McCutcheon, M. Elimelech. 2007. Modeling Water Flux in Forward Osmosis: Implications for Improved Membrane Design. AIChE Journal. 53: 1736-1744.
M. Reali, G. Dassie, G. Jonsson. 1990. Computation of Salt Concentration Profiles in the Porous Substrate of Anisotropic Membranes Under Steady Pressure-Retarded-Osmosis Conditions. Journal of Membrane Science. 48: 181-201.
J. R. McCutcheon, M. Elimelech. 2006. Influence of Concentrative and Dilutive Internal Concentration Polarization on Flux Behavior in Forward Osmosis. Journal of Membrane Science. 284: 237-247.
C. H. Tan, H. Y. Ng. 2008. Modified Models to Predict Flux Behavior in Forward Osmosis in Consideration of External and Internal Concentration Polarizations. Journal of Membrane Science. 324: 209-219.
M. Park, J. J. Lee, S. Lee, J. H. Kim. 2011. Determination of a Constant Membrane Structure Parameter in Forward Osmosis Processes. Journal of Membrane Science. 375: 241-248.
C. Y. Tang, Q. She, W. C. Lay, R. Wang, R. Field, A. G. Fane. 2011. Modeling Double-skinned FO Membranes. Desalination. 283: 178-186.
N. T. Hancock, P. Xu, D. M. Heil, C. Bellona, T. Y. Cath. 2011. Comprehensive Bench-and Pilot-scale Investigation of Trace Organic Compounds Rejection by Forward Osmosis. Environmental Science & Technology. 45: 8483-8490.
C. Y. Tang, Q. She, W. C. Lay, R. Wang, A. G. Fane. 2010. Coupled Effects of Internal Concentration Polarization and Fouling on Flux Behavior of Forward Osmosis Membranes During Humic Acid Filtration. Journal of Membrane Science. 354: 123-133.
J. R. McCutcheon, R. L. McGinnis, M. Elimelech. 2006. Desalination by Ammonia–carbon Dioxide Forward Osmosis: Influence of Draw and Feed Solution Concentrations on Process Performance. Journal of Membrane Science. 278: 114-123.
A. Achilli, T. Y. Cath, A. E. 2009. Childress, Power Generation with Pressure Retarded Osmosis: An Experimental and Theoretical Investigation. Journal of Membrane Science. 343: 42-52.
B. Gu, D. Kim, J. Kim, D. Yang. 2011. Mathematical Model of Flat Sheet Membrane Modules for FO Process: Plate-and-frame Module and Spiral-wound Module. Journal of Membrane Science. 379: 403-415.
G. Schock, A. Miquel. 1987. Mass Transfer and Pressure Loss in Spiral Wound Modules. Desalination. 64: 339-352.
V. Gekas, B. Hallström. 1987. Mass Transfer in the Membrane Concentration Polarization Layer Under Turbulent Cross Flow: I. Critical literature Review and Adaptation of Existing Sherwood Correlations to Membrane Operations. Journal of Membrane Science. 30: 153-170.
E. M. Hoek, A. S. Kim, M. Elimelech. 2002. Influence of Crossflow Membrane Filter Geometry and Shear Rate on Colloidal Fouling in Reverse Osmosis and Nanofiltration Separations. Environmental Engineering Science. 19: 357-372.
M. C. Wong, K. Martinez, G. Z. Ramon, E. Hoek. 2012. Impacts of Operating Conditions and Solution Chemistry on Osmotic Membrane Structure and Performance. Desalination. 287: 340-349.
Y. Xu, X. Peng, C. Y. Tang, Q. S. Fu, S. Nie. 2010. Effect of Draw Solution Concentration and Operating Conditions on Forward Osmosis and Pressure Retarded Osmosis Performance in a Spiral Wound Module. Journal of Membrane Science. 348: 298-309.
C. Y. Tang, Q. She, W. C. L. Lay, R. Wang, A. G. Fane. 2010. Coupled Effects of Internal Concentration Polarization and Fouling on Flux Behavior of Forward Osmosis Membranes during Humic Acid Filtration. Journal of Membrane Science. 354: 123-133.
N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, M. Elimelech. 2010. High Performance Thin-film Composite Forward Osmosis Membrane. Environmental Science & Technology. 44: 3812-3818.
N. T. Hancock, W. A. Phillip, M. Elimelech, T. Y. Cath. 2011. Bidirectional Permeation of Electrolytes in Osmotically Driven Membrane Processes. Environmental Science & Technology. 45: 10642-10651.
N. T. Hancock, T. Y. Cath. 2009. Solute Coupled Diffusion in Osmotically Driven Membrane Processes. Environmental Science & Technology. 43: 6769-6775.
J. S. Yong, W. A. Phillip, M. Elimelech. 2012. Coupled Reverse Draw Solute Permeation and Water Flux in Forward Osmosis with Neutral Draw Solutes. Journal of Membrane Science. 392: 9-17.
Q. She, X. Jin, C. Y. Tang. 2012. Osmotic Power Production from Salinity Gradient Resource by Pressure Retarded Osmosis: Effects of Operating Conditions and Reverse Solute Diffusion. Journal of Membrane Science. 401-402: 262-273.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.