Fabrication and Characterization of Ni(BDC)(TED)0.5/Polysulfone Mixed Matrix Membrane

Authors

  • X. Y. Lee Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia CO2 Research Centre (CO2RES), Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
  • T. L. Chew Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia CO2 Research Centre (CO2RES), Institute of Contaminant Management, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia https://orcid.org/0000-0002-2980-901X
  • Q. H. Ng Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Malaysia Perlis, Kampus UniCITI Alam, Sungai Chuchuh, Padang Besar, 02100 Perlis, Malaysia

DOI:

https://doi.org/10.11113/amst.v24n2.173

Abstract

Mixed Matrix Membranes (MMMs) appear to be very potential materials to enable efficient gas permeation. MMMs consist of inorganic particle filler dispersed in a continuous polymeric matrix homogeneously. Among various type of filler materials, Metal Organic Frameworks (MOFs) have been discovered as the potential fillers to be used in fabrication of MMMs due to their high affinity with the polymer chains and high sorption capacity which is contributed by their high porosity properties. In this study, Ni(BDC)(TED)0.5, which is a type of MOFs was synthesized via solvothermal method at 120 °C for 48 hours and subsequently incorporated into polysulfone (Psf) matrix in order to fabricate MMMs. The loading of Ni(BDC)(TED)0.5 in the MMMs was varied from 5 wt% to 20 wt% in order to study the effect of fillers on the properties as well as CO2 gas permeation performance of the MMMs. The property of the samples were investigated by using characterization method of X-ray diffractometer (XRD) and field emission scanning electron microscope (FESEM) coupled with energy dispersive X-ray (EDX) spectrometry. The synthesized Ni(BDC)(TED)0.5 was well crystallized and possessed an irregular elongated shape. FESEM and XRD results showed that Ni(BDC)(TED)0.5 was successfully incorporated into Psf polymer matrix. Lastly, gas permeation test was conducted to determine the CO2 gas permeation. In this study, the CO2/CH4 selectivity increased when the filler loading increased from 5 wt% to 10 wt%, and the optimum CO2/CH4 selectivity of 11.75 was obtained with 10 wt% of Ni(BDC)(TED)0.5 incorporated into the MMMs.

References

M. Aroon, A. Ismail, T. Matsuura, M. M. Montazer-Rahmati. 2010. Performance Studies of Mixed Matrix Membranes for Gas Separation: A Review. Sep. Purif. Technol. 75: 229-242.

T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja. 2007. Mixed Matrix Membranes (MMMs) Comprising Organic Polymers with Dispersed Inorganic Fillers for Gas Separation. Prog. Polym. Sci. 32: 483-507.

S. Basu, A. Odena, I. Vankelecom. 2011. MOF-containing Mixed-matrix Membranes for CO2/CH4 and CO2/N2 Binary Gas Mixture Separations. Sep. Purif. Technol. 81: 31-40.

D. Hülagü, V. Kramer, M. Kraume. 2012. Preparation and Characterization of Mixed-Matrix-membranes.

B. Ladewig, M. N. Z. Al-Shaeli. 2017. Fundamentals of Membrane Bioreactors: Materials, Systems and Membrane Fouling. Singapore: Springer Singapore. 13-37.

A. Ismail, P. Goh, S. M. Sanip, M. Aziz. 2009. Transport and Separation Properties of Carbon Nanotube-mixed Matrix Membrane. Sep. Purif. Technol. 70: 12-26.

P. Goh, A. Ismail, S. M. Sanip, B. C. Ng, M. Aziz. 2011. Recent Advances of Inorganic Fillers in Mixed Matrix Membrane for Gas Separation. Sep. Purif. Technol. 81: 243-264.

Y. Liu, M. Chng, T.-S. Chung, R. Wang. 2003. Effects of Amidation on Gas Permeation Properties of Polyimide Membranes. J. Membr. Sci. 214: 83-92.

K. Tan, N. Nijem, P. Canepa, Q. Gong, J. Li, T. Thonhauser, Y. Chabal. 2012. Stability and Hydrolyzation of Metal Organic Frameworks with Paddle-wheel SBUs upon Hydration. Chem. Mater. 24.

W. Liang, F. Xu, X. Zhou, J. Xiao, Q. Xia, Y. Li, Z. Li. 2016. Ethane Selective Adsorbent Ni(BDC)(TED)0.5 with High Uptake and Its Significance in Adsorption Separation of Ethane and Ethylene. Chem. Eng. Sci. 148: 275-281.

K. Tan, N. Nijem, Y. Gao, S. Zuluaga, J. Li, T. Thonhauser, Y. J. Chabal. 2015. Water Interactions in Metal Organic Frameworks. CrystEngComm. 17: 247-260.

M. Bosch, M. Zhang, H.-C. Zhou. 2014. Increasing the Stability of Metal-organic Frameworks. Adv. Chem. 8.

L. Peng, S. Wu, X. Yang, J. Hu, X. Fu, Q. Huo, J. Guan. 2016. Application of Metal Organic Frameworks M(bdc)(ted)0.5 (M = Co, Zn, Ni, Cu) in the Oxidation of Benzyl Alcohol. RSC Adv. 6: 72433-72438.

Z. S. Larasati, R. Wijiyanti, Z.A. Karim, A. F. Ismail, N. Widiastuti. 2019. Fabrication of Mixed Matrix Membrane Polysulfone-zeolite Carbon Composites (ZCC) for Gas Separation. IOP Conf. Ser.: Mater. Sci. Eng. 546: 042020.

M. Etxeberria-Benavides, O. David, T. Johnson, M. M. ÅoziÅ„ska, A. Orsi, P. A. Wright, S. Mastel, R. Hillenbrand, F. Kapteijn, J. Gascon. 2018. High Performance Mixed Matrix Membranes (MMMs) Composed of ZIF-94 Filler and 6FDA-DAM Polymer. J. Membr. Sci. 550: 198-207.

E. V. Perez, K. J. Balkus Jr., J. P. Ferraris, I. H. Musselman. 2009. Mixed-matrix Membranes Containing MOF-5 for Gas Separations. J. Membr. Sci. 328: 165-173.

J. Guerrero-Medina, G. Mass-González, L. Pacheco-Londono, S. Hernández-Rivera, R. Fu, A. Hernández-Maldonado. 2015. Long and Local Range Structural Changes in M[(BDC)(TED)0.5] (M = Zn, Ni or Cu) Metal Organic Frameworks Upon Spontaneous Thermal Dispersion of LiCl and Adsorption of Carbon Dioxide. Microporous Mesoporous Mater. 212: 8-17.

J. Y. Lee, D. H. Olson, L. Pan, T. J. Emge, J. Li. 2007. Microporous Metal–organic Frameworks with High Gas Sorption and Separation Capacity. Adv. Funct. Mater. 17: 1255-1262.

M. Ionita, E. Vasile, L. E. Crica, S. I. Voicu, A. M. Pandele, S. Dinescu, L. Predoiu, B. Galateanu, A. Hermenean, M. Costache. 2015. Synthesis, Characterization And In Vitro Studies of Polysulfone/graphene Oxide Composite Membranes. Composites, Part B. 72: 108-115.

F. Cacho-Bailo, B. Seoane, C. Téllez, J. Coronas. 2014. ZIF-8 Continuous Membrane on Porous Polysulfone for Hydrogen Separation. J. Membr. Sci. 464: 119-126.

R. S. Murali, M. Padaki, T. Matsuura, M. S. Abdullah, A. F. Ismail. 2014. Polyaniline In Situ Modified Halloysite Nanotubes Incorporated Asymmetric Mixed Matrix Membrane for Gas Separation. Sep. Purif. Technol. 132: 187-194.

Y. F. Chen, J. Y. Lee, R. Babarao, J. Li, J.W. Jiang. 2010. A Highly Hydrophobic Metal-organic Framework Zn(BDC)(TED)0.5 for Adsorption and Separation of CH3OH/H2O and CO2/CH4: An Integrated Experimental and Simulation Study. J. Phys. Chem. C 114: 6602-6609

M. Rezakazemi, A.E. Amooghin, M. M. Montazer-Rahmati, A. F. Ismail, T. Matsuura. 2014. State-of-the-art Membrane Based CO2 Separation Using Mixed Matrix Membranes: An Overview on Current Status and Future Directions. Prog. Poly. Sci. 39: 817-861.

I. Erucar, S. Keskin. 2011. Separation of CO2 Mixtures Using Zn(bdc)(ted)0.5 Membranes and Composites: A Molecular Simulation Study. J. Phys. Chem. C 115: 13637-13644

Downloads

Published

2020-07-16

How to Cite

Lee, X. Y., Chew, T. L., & Ng, Q. H. (2020). Fabrication and Characterization of Ni(BDC)(TED)0.5/Polysulfone Mixed Matrix Membrane. Journal of Applied Membrane Science & Technology, 24(2). https://doi.org/10.11113/amst.v24n2.173

Issue

Section

Articles