Role of Membrane Surface Charge and Complexation-Ultrafiltration for Heavy Metals Removal: A Mini Review

Authors

  • M. F. Hamid Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. Yusof Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. M. Ismail Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
  • M. A. Azali Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/amst.v24n1.170

Abstract

Membrane technology is a promising water purification unit operation from household use to industrial application owing to its simplicity of operation, efficient recovery and minimum need for chemical and space allocation. Due to that reason, study on the membrane applications have becoming more popular among scientific community nowadays and one of the applications is removal of heavy metal using ultrafiltration (UF). However, a stand-alone UF will be not able to carry out the removal of heavy metals effectively. Certain modification is required in order to enhance its rejection via unique facilitated mechanism. Thus in this review, role of surface charge interaction as well as the method of complexation-ultrafiltration were discussed.

Author Biographies

N. Yusof, Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Senior Lecturer,

School of Chemical and Energy Engineering,

Faculty of Engineering,

Universiti Teknologi Malaysia.

N. M. Ismail, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia

Senior lecturer,

Faculty of Engineering,

Universiti Malaysia Sabah.

M. A. Azali, Advanced Membrane Technology Research Centre (AMTEC), N29A, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

Assistant Engineer,

Advanced Membrane Technology Research Centre (AMTEC), N29A, 81310, Universiti Teknologi Malaysia.

References

M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marĩas, A. M. Mayes. 2008. Science and Technology for Water Purification in the Coming Decades. Nature. 452: 301-310. Doi:10.1038/nature06599.

H. B. Bradl. 2005. Chapter 1 Sources and Origins of Heavy Metals. Interface Sci. Technol. 6: 1-27. Doi:10.1016/S1573-4285(05)80020-1.

T. A. Kurniawan, G. Y. S. Chan, W. H. Lo, S. Babel. 2006. Physico-chemical Treatment Techniques for Wastewater Laden with Heavy Metals. Chem. Eng. J. 118: 83-98. Doi:10.1016/j.cej.2006.01.015.

M. A. Barakat. 2011. New Trends in Removing Heavy Metals from Industrial Wastewater. Arab. J. Chem. 4: 361-377. Doi:10.1016/j.arabjc.2010.07.019.

N. Abdullah, N. Yusof, W. J. Lau, J. Jaafar, A. F. Ismail. 2019. Recent Trends of Heavy Metal Removal from Water/Wastewater by Membrane Technologies. J. Ind. Eng. Chem. 76: 17-38. Doi:10.1016/J.JIEC.2019.03.029.

N. L. Le, S. P. Nunes. 2016. Materials and Membrane Technologies for Water and Energy Sustainability. Sustain. Mater. Technol. 7: 1-28. Doi:10.1016/j.susmat.2016.02.001.

Safe Drinking Water Foundation, 2008. Ultrafiltration, Nanofiltration and Reverse osmosis, Safe Drink. Water Found. 1-6. http://www.hinesburg.org/water-project/safewaterdotorg-info-nano-and-ultrafiltration-reverse-osmosis.pdf.

W.-J. Lau, C.-S. Ong, N. A. H. M. Nordin, N. A. A. Sani, N. M. Mokhtar, R. Jamshidi Gohari, D. Emadzadeh, A. Fauzi Ismail. 2016. Surface Modification of Polymeric Membranes for Various Separation Processes. Surf. Treat. Biol. Chem. Phys. Appl. 115-180. Doi:10.1002/9783527698813.ch4.

N. Abdullah, R. J. Gohari, N. Yusof, A. F. Ismail, J. Juhana, W. J. Lau, T. Matsuura. 2016. Polysulfone/hydrous Ferric Oxide Ultrafiltration Mixed Matrix Membrane: Preparation, Characterization and Its Adsorptive Removal of Lead (II) from Aqueous Solution. Chem. Eng. J. 289: 28-37. Doi:10.1016/J.CEJ.2015.12.081.

S. Shahrin, W. J. Lau, P. S. Goh, J. Jaafar, A. F. Ismail. 2018. Adsorptive Removal of as (V) Ions from Water using Graphene Oxide-manganese Ferrite and Titania Nanotube-manganese Ferrite Hybrid Nanomaterials. Chem. Eng. Technol. 41: 2250-2258. Doi:10.1002/ceat.201800322.

R. Jamshidi Gohari, W. J. Lau, T. Matsuura, E. Halakoo, A. F. Ismail. 2013. Adsorptive Removal of Pb(II) from Aqueous Solution by Novel PES/HMO Ultrafiltration Mixed Matrix Membrane. Sep. Purif. Technol. 120: 59-68. Doi:10.1016/J.SEPPUR.2013.09.024.

V. Nayak, M. S. Jyothi, R. G. Balakrishna, M. Padaki, A. M. Isloor. 2016. Synthesis and Characterization of Novel Sulfanilic Acid-polyvinyl Chloride-polysulfone Blend Membranes for Metal Ion Rejection. RSC Adv. 6: 25492-25502. Doi:10.1039/c6ra02590k.

M. R. Muthumareeswaran, M. Alhoshan, G. P. Agarwal. 2017. Ultrafiltration Membrane for Effective Removal of Chromium Ions from Potable Water. Sci. Rep. 7: 1-12. Doi:10.1038/srep41423.

M. A. Barakat, E. Schmidt. 2010. Polymer-enhanced Ultrafiltration Process for Heavy Metals Removal from Industrial Wastewater. Desalination. 256: 90-93. Doi:10.1016/j.desal.2010.02.008.

B. Lam, S. Déon, N. Morin-Crini, G. Crini, P. Fievet. 2018. Polymer-enhanced Ultrafiltration for Heavy Metal Removal: Influence of Chitosan and Carboxymethyl Cellulose on Filtration Performances. J. Clean. Prod. 171: 927-933. Doi:10.1016/j.jclepro.2017.10.090.

A. Rether, M. Schuster. 2003. Selective Separation and Recovery of Heavy Metal Ions Using Water-soluble N-benzoylthiourea Modified PAMAM Polymers. React. Funct. Polym. 57: 13-21. Doi:10.1016/J.REACTFUNCTPOLYM.2003.06.002.

A. E. Childress, M. Elimelech. 2000. Relating Nanofiltration Membrane Performance to Membrane Charge (Electrokinetic) Characteristics. Environ. Sci. Technol. 34: 3710-3716. Doi:10.1021/es0008620.

J. Zeng, H. Ye, H. Liu, H. Xie. 2006. Characterization of a Hollow-fiber Ultrafiltration Membrane and Control of Cleaning Procedures by a Streaming Potential Method. Desalination. 195: 226-234. Doi:10.1016/j.desal.2005.12.003.

L. M. Ortega, R. Lebrun, J. F. Blais, R. Hausler. 2008. Removal of Metal Ions from an Acidic Leachate Solution by Nanofiltration Membranes. Desalination. 227: 204-216. Doi:10.1016/j.desal.2007.06.026.

J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms. 1998. Influence of Ion Size and Charge in Nanofiltration. Sep. Purif. Technol. 14: 155-162. Doi: https://doi.org/10.1016/S1383-5866(98)00070-7.

Y. Zhang, S. Zhang, T. S. Chung, 2015. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Environ. Sci. Technol. 49: 10235-10242. Doi:10.1021/acs.est.5b02086.

H. R. Lohokare, M. R. Muthu, G. P. Agarwal, U. K. Kharul. 2008. Effective Arsenic Removal Using Polyacrylonitrile-based Ultrafiltration (UF) Membrane. J. Memb. Sci. 320: 159-166. doi:10.1016/j.memsci.2008.03.068.

S. You, J. Lu, C.Y. Tang, X. Wang, Rejection of heavy metals in acidic wastewater by a novel thin-film inorganic forward osmosis membrane, Chem. Eng. J. 320 (2017) 532.

F.M. Almutairi, P.M. Williams, R.W. Lovitt, Effect of membrane surface charge on filtration of heavy metal ions in the presence and absence of polyethylenimine, Desalin. Water Treat. 42 (2012) 131–137. doi:10.1080/19443994.2012.683097.

F. Fu, Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage. 92 (2011) 407–418. doi:10.1016/j.jenvman.2010.11.011.

G. Chauhan, K.K. Pant, K.D.P. Nigam, Chelation technology: A promising green approach for resource management and waste minimization, Environ. Sci. Process. Impacts. 17 (2015) 12–40. doi:10.1039/c4em00559g.

M.K. Aroua, F.M. Zuki, N.M. Sulaiman, Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration, J. Hazard. Mater. 147 (2007) 752–758. doi:10.1016/j.jhazmat.2007.01.120.

M. Chen, K. Shafer-Peltier, S. J. Randtke, E. Peltier. 2018. Competitive Association of Cations with Poly(sodium 4-styrenesulfonate) (PSS) and Heavy Metal Removal from Water by PSS-assisted Ultrafiltration. Chem. Eng. J. 344: 155-164. Doi:10.1016/j.cej.2018.03.054.

H. Ibrahim, N. Sazali, I. Naiman, M. Sharip. 2019. Nano-structured Cellulose as Green Adsorbents for Water Purification: A Mini Review. J. Appl. Membr. Sci. Technol. 23: 45-56. Doi:10.11113/amst.v23n2.154.

M. A. Barakat. 2008. Removal of Cu (II), Ni (II) and Cr (III) Ions from Wastewater Using Complexation-ultrafiltration Technique. J. Environ. Sci. Technol. 1: 151-156. Doi:10.3923/jest.2008.151.156.

E. Tian, C. Hu, Y. Qin, Y. Ren, X. Wang, X. Wang, P. Xiao, X. Yang. 2015. A Sudy of Poly (sodium 4-styrenesulfonate) as Draw Solute in Forward Osmosis. Desalination. 360: 130-137. doi:10.1016/J.DESAL.2015.01.001.

Downloads

Published

2020-02-26

How to Cite

Hamid, M. F., Yusof, N., Ismail, N. M., & Azali, M. A. (2020). Role of Membrane Surface Charge and Complexation-Ultrafiltration for Heavy Metals Removal: A Mini Review. Journal of Applied Membrane Science &Amp; Technology, 24(1). https://doi.org/10.11113/amst.v24n1.170

Issue

Section

Articles