Preparation, Characterization and Performances of Photocatalytic TiO2-Ag2O/PESf Membrane for Methylene Blue Removal

Authors

  • Z. Rajis School of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • N. F. A. N. Azmi School of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • S. N. N. M. Makhtar School of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. N. A. M. Norddin School of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • A. Mustafa School of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/amst.v23n2.160

Abstract

This study proposed an effective method of methylene blue (MB) removal using a membrane with photocatalytic properties. The photocatalytic membrane, made of polyethersulfone (PESf) was incorporated with titanium dioxide (TiO2) and silver oxide (Ag2O) as the photocatalyst during the phase inversion process. TiO2 was synthesized using sol-gel method before being modified by Ag2O via wet pre-deposition method. The PESf/TiO2/Ag2O (PTA) membrane was characterized using scanning electron microscope coupled with elementary dispersion X-ray (SEM-EDX), X-ray diffraction analysis (XRD), attenuated Fourier transform infrared (ATR-FTIR), and ultraviolet visible near infrared (UV-vis NIR). The PTA membrane with 0.2 wt.% loading of TiO2/Ag2O shows uniform distribution of the photocatalyst materials and exhibits the highest degradation of MB at 85%. The TiO2/Ag2O presence was confirmed by the crystallinity analysis using XRD. UV-Vis NIR revealed that the band gap of TiO2 reduced from 3.2 to 2.1 eV when modified with Ag2O. This proved that membrane separation assisted with photocatalytic degradation is able to perform high degradation of MB dyes and has potential to be applied in industrial application.

References

B. A. Fil, C. Özmetin, and M. Korkmaz. 2012. Cationic Dye (methylene blue) Removal from Aqueous Solution by Montmorillonite. Bull. Korean Chem. Soc. 33(10): 3184-3190.

H. Xiao, T. Zhao, C. H. Li, and M. Y. Li. 2017. Eco-friendly Approaches for Dyeing Multiple Type of Fabrics with Cationic Reactive Dyes. J. Clean. Prod. 165: 1499-1507.

L. Cai, T. Xu, J. Shen, and W. Xiang. 2015. Highly Efficient Photocatalytic Treatment of Mixed Dyes Wastewater via Visible-light-driven AgI – Ag3PO4/MWCNTs Mater. Sci. Semicond. Process. 37: 19-28.

I. A. W. Tan, A. L. Ahmad, and B. H. Hameed. 2008. Adsorption of Basic Dye on High-surface-area Activated Carbon Prepared from Coconut Husk: Equilibrium, Kinetic and Thermodynamic Studies. J. Hazard. Mater. 154(1-3): 337-346.

I. A. W. Tan, A. L. Ahmad, and B. H. Hameed. 2008. Adsorption of Basic Dye Using Activated Carbon Prepared from Oil Palm Shell: Batch and Fixed Bed Studies. Desalination. 225(1-3): 13-28.

D. Ghosh and K. G. Bhattacharyya. 2002. Adsorption of Methylene Blue on Kaolinite. Applied Clay Science. 20: 295-300.

W. A. Mcgowan. 1995. Environmental Requirements.

H. Lachheb. 2002. Photocatalytic Degradation of Various Types of Dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in Water by UV-Irradiated Titania. Appl. Catal. B Environ. 39(1): 75-90.

A. Rahimpour, S. S. Madaeni, A. H. Taheri, and Y. Mansourpanah. 2008. Coupling TiO2 Nanoparticles with UV Irradiation for Modification of Polyethersulfone Ultrafiltration Membranes. J. Membr. Sci. 313(1-2): 158-169.

V. Ghaffarian, S. M. Mousavi, M. Bahreini, and H. Jalaei. 2014. Polyethersulfone/poly (butylene succinate) Membrane: Effect of Preparation Conditions on Properties and Performance. J. Ind. Eng. Chem. 20(4): 1359-1366.

L. Shen. 2012. Preparation and Characterization of ZnO /polyethersulfone (PES) Hybrid Membranes. Desalination. 293: 21-29.

N. Maximous, G. Nakhla, W. Wan, and K. Wong. 2009. Preparation, Characterization and Performance of Al2O3/PES Membrane for Wastewater Filtration. J. Memb. Sci. 341(1-2): 67-75.

D. Jafar, Z. Yaakob, and S. Shahgaldi. 2011. Synthesis and Characterization of PES / TiO2 Nanofibers Membrane. 315: 613-619.

I. C. Kim, J. G. Choi, and T. M. Tak. 1999. Sulfonated Polyethersulfone by Heterogeneous Method and Its Membrane Performances. J. Appl. Polym. Sci. 74(8): 2046-2055

Z. Rajis, A. Noorul, Mohammad Mohd, and A. Mustafa. 2017. Preparation and Structural Characterization of Binary Catalyst for Dye Wastewater. J. Teknol. 2: (79): 65-71.

G. Wu, S. Gan, L. Cui, and Y. Xu. 2008. Effect of Polyamide Molecular Structure on the Performance of Reverse Osmosis Membrane. Appl. Surf. Sci. 254: 7080-7086.

W.-J. Yin, S. Chen, J.-H. Yang, X.-G. Gong, Y. Yan, and S.-H. Wei. 2010. Effective Band Gap Narrowing of Anatase TiO [sub 2] by Strain Along a Soft Crystal Direction. Appl. Phys. Lett. 96(22): 221901.

M. Z. Shahruddin, N. Zakaria, N. F. D. Junaidi, N. H. Alias, and N. H. Othman. 2016. Study of the Effectiveness of Titanium Dioxide (TiO2) Nanoparticle in Polyethersulfone (PES) Composite Membrane for Removal of Oil in Oily Wastewater. J. Appl. Membr. Sci. Technol. 19: 33-42

G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri. 2011. Polymeric Materials as Anion-exchange Membranes for Alkaline Fuel Cells Prog. Polym. Sci. 36(11): 1521-1557.

E. Yuliwati, A. F. Ismail, T. Matsuura, M. A. Kassim, and M. S. Abdullah. 2011. Characterization of Surface-modified Porous PVDF Hollow Fibers for Refinery Wastewater Treatment Using Microscopic Observation. Desalination. 283: 206-213.

A. Sotto, A. Boromand, S. Balta, J. Kim, and B. Van der Bruggen. 2011. Doping of Polyethersulfone Nanofiltration Membranes: Antifouling Effect Observed at Ultralow Concentrations of TiO2 nanoparticles. J. Mater. Chem. 21: 10311.

A. Rahimpour and S. S. Madaeni. 2010. Improvement of Performance and Surface Properties of Nano-porous Polyethersulfone (PES) Membrane Using Hydrophilic Monomers as Additives in the Casting Solution. J. Membr. Sci. 360: 371-379.

Z. Shahryari, A. S. Goharrizi, and M. Azadi. 2010. Experimental Study of Methylene Blue Adsorption from Aqueous Solutions onto Carbon Nano Tubes. Int. J. of Water Resources and Environmental Eng. 2(2): 16-28.

W. Zhou. 2016. A TiO2 Embedded Structure for Perovskite Solar Cells with Anomalous Grain Growth and Effective Electron Extraction. J. Mater. Chem. 5(4): 1406-1414

K. Fischer, R. Gläser, and A. Schulze. 2014. Nanoneedle and Nanotubular Titanium Dioxide – PES Mixed Matrix Membrane for Photocatalysis. Appl. Catal. B Environ. 160: 456-464.

C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang and W. Wang. 2017. Highly Efficient Photocatalytic Degradation of Methylene Blue by P2ABSA-Modified TiO2 Nanocomposite Due to the Photosensitization Synergetic Effect of TiO2 and P2ABSA. RSC Advance. 7: 23699-23708.

Z. A. M. Hir, P. Moradihamedani, A. H. Abdullah, and M. A. Mohamed. 2017. Immobilization of TiO2into Polyethersulfone Matrix as Hybrid Film Photocatalyst for Effective Degradation of Methyl Orange Dye. Mater. Sci. Semicond. Process. 57: 157-165.

F. Chen, Z. Liu, Y. Liu, P. Fang, and Y. Dai. 2013. Enhanced Adsorption and Photocatalytic Degradation of High-Concentration Methylene Blue on Ag2O-modified TiO2-based Nanosheet. Chem. Eng. J. 221: 283-291

F. J. Zhang, M. L. Chen, and W. C. Oh. 2010. Photoelectrocatalytic Properties of Ag-CNT/TiO2 Composite Electrodes for Methylene Blue Degradation. Xinxing Tan Cailiao/New Carbon Mater. 25: 348-356.

Downloads

Published

2019-07-15

How to Cite

Rajis, Z., Azmi, N. F. A. N., Makhtar, S. N. N. M., Norddin, M. N. A. M., & Mustafa, A. (2019). Preparation, Characterization and Performances of Photocatalytic TiO2-Ag2O/PESf Membrane for Methylene Blue Removal. Journal of Applied Membrane Science & Technology, 23(2). https://doi.org/10.11113/amst.v23n2.160

Issue

Section

Articles