Protonated Carbon Nitride Incorporated Polyamide Thin Film Nanocomposite for Reverse Osmosis Desalination

Authors

  • A. Abdul Aziz School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • P. S. Goh School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. A. Azali School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. N. Zainal Abidin School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. H. Abu Ba'dah School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/amst.v23n2.153

Abstract

Protonated carbon nitride (pCN) prepared from acid treatment of carbon nitride (CN) was incorporated in the polysulfone (PSf) substrate and polyamide (PA) layer to produce thin film nanocomposite (TFN) membrane. The hydrophilicity of CN is expected to improve the surface hydrophilicity of the membrane and acid treatment of nanoparticle is aimed to further enhance the surface structure and prevent the agglomeration of nanomaterial from taking place. pCN loading used in the PSf substrate was 0.5% while in the PA layer was varied as 0.05%, 0.1% and 0.15%. All the membrane prepared were characterized in terms of morphology, structural properties, and surface chemistry. Reverse osmosis dead-end filtration system was used to determine the water permeability and the salt rejection. It was observed that, all the membrane prepared could maintain the salt rejection with improvement of water permeability. However, the salt rejection was sacrificed when higher loading of 0.15% pCN was tested, although the water permeability of the membrane has reached approximately 0.5 LMHbar. This work demonstrates that the use of pCN in RO membrane can improve the water permeability without sacrificing the salt rejection.

References

D. Pimentel, M. Burgess. 2015. World Human Population Problems. Reference Module in Earth Systems and Environmental Sciences. Elsevier Inc. 4: 313-317.

WWAP (United Nations World Water Assessment Programme). 2015. The United Nations World Water Development Report 2015: Water for a Sustainable World. Paris, UNESCO.

D. E. W. S. Loeb, S. Sourirajan. 1964. High Flow Porous Membranes for Separating Water from Saline Solutions.

V. Vatanpour, M. Safarpour, A. Khataee, H. Zarrabi. 2017. A Thin Film Nanocomposite Reverse Osmosis Membrane Containing Amine-functionalized Carbon Nanotubes. Separation and Purification Technology. 184: 135-143.

D. Emadzadeh, W. J. Lau, M. Rahbari-sisakht, A. Daneshfar, M. Ghanbari, A. Mayahi. 2015. A Novel Thin Film Nanocomposite Reverse Osmosis Membrane with Superior Anti-organic Fouling Affinity for Water Desalination. DES. 368: 106-113.

J. Farahbaksh, M. Delnavaz, V. Vatanpour. 2017. Investigation of Raw and Oxidized Multiwalled Carbon Nanotubes in Fabrication of Reverse Osmosis Polyamide Membranes for Improvement in Desalination and Antifouling Properties. Desalination. 410: 1-9.

Y. Wang, R. Ou, H. Wang, T. Xu. 2015. Graphene Oxide Modified Graphitic Carbon Nitride as a Modifier for Thin Film Composite Forward Osmosis Membrane. J. Membr. Sci. 475: 281-289.

I. W. Azelee, P. S. Goh, W. J. Lau, A. F. Ismail, K. C. Wong, M. N. Subramaniam. 2017. Enhanced Desalination of Polyamide Thin Film Nanocomposite Incorporated with Acid Treated Multiwalled Carbon Nanotube-titania Nanotube Hybrid. Desalination. 409: 163-170.

S. C. Yan, Z. S. Li, Z. G. Zou. 2009. Photodegradation Performance of g-C3N4 Fabricated by Directly Heating Melamine. Langmuir. 25: 10397-10401

M. Sihor, P. Praus, L. Svoboda, M. Ritz, I. Troppov, K. Ko. 2017. Graphitic Carbon Nitride: Synthesis, Characterization and Photocatalytic Decomposition of Nitrous Oxide, Materials Chemistry and Physics. 193: 438-446.

J. Zhu, P. Xiao, H. Li, A. C. Carabineiro. 2014. Graphitic Carbon Nitride: Synthesis, Properties, and Applications in Catalysis. Applied Materials and Interfaces. 6: 16449-16465.

I. A. Mudunkotuwa, V. H. Grassian, 2010. Citric Acid Adsorption on TiO2 Nanoparticles in Aqueous Suspensions at Acidic and Circumneutral Ph: Surface Coverage, Surface Speciation, and Its Impact on Nanoparticle - Nanoparticle Interactions. J. Am. Chem. Soc. 132: 14986-14994.

B. W. Ninham. 1999. On Progress in Forces Since the DLVO Theory, Advances in Colloid and Interface Science. 83: 1-17.

W. Ong, L. Tan, S. Chai, S. Yong, A. Rahman. 2015. Surface Charge Modification via Protonation of Graphitic Carbon Nitride (g-C3N4) for Electrostatic Self-assembly Construction of 2D / 2D Reduced Graphene Oxide (rGO)/g-C3N4 Nanostructures Toward Enhanced Photocatalytic Reduction of Carbon Dioxide to Metha. Nano Energy. 13: 757-770.

L. Ma, H. Fan, K. Fu, S. Lei, Q. Hu, H. Huang, G. He. 2017. Protonation of Graphitic Carbon Nitride (g-C3N4) for Electrostatically Self-assembling Carbon @ g-C3N4 Core-shell Nanostructure Toward High Hydrogen Evolution. Sustainable Chemistry and Engineering. 5: 7093-7103.

X. Zhang, J. Hu, H. Jiang. 2014. Facile Modification of a Graphitic Carbon Nitride Catalyst to Improve Its Photoreactivity Under Visible Light Irradiation. Chemical Engineering Journal. 256: 230-237.

W. Ong, L. Tan, S. Chai, S. Yong, A. Rahman. 2015. Surface Charge Modification via Protonation of Graphitic Carbon Nitride (g-C3N4) for Electrostatic Self-assembly Construction of 2D / 2D Reduced Graphene Oxide (rGO)/ g-C3N4 Nanostructures toward Enhanced Photocatalytic Reduction of Carbon Dio. Nano Energy. 13: 757-770.

Y. Zhang, A. Thomas, M. Antonietti, X. Wang. 2009. Activation of Carbon Nitride Solids by Protonation : Morphology Changes. Enhanced Ionic Conductivity, and Photoconduction Experiments. J. Am. Chem. Soc. 4: 50-51.

C. Huang, W. Zhang, Z. Yan, J. Gao, W. Liu, P. Tong, L. Zhang. 2015. Protonated Mesoporous Graphitic Carbon Nitride for Rapid and Highly Efficient Removal of Microcystins. RSC Adv. 5: 45368-45375.

J. Wang, D. Hao, J. Ye, N. Umezawa. 2017. Determination of Crystal Structure of Graphitic Carbon Nitride: Ab Initio Evolutionary Search and Experimental Validation. Chemistry of Materials. 29: 2694-2707.

R. Niu, L. Kong, L. Zheng, H. Wang, H. Shi. 2017. Novel graphitic Carbon Nitride Nanosheets/sulfonated Poly (ether ether ketone) Acid-base Hybrid Membrane for Vanadium Redox Flow Battery. Journal of Membrane Science. 525: 220-228.

G. N. B. Baroña, J. Lim, M. Choi, B. Jung. 2013. Interfacial Polymerization of Polyamide-aluminosilicate SWNT Nanocomposite Membranes for Reverse Osmosis. DES. 325: 138-147.

X. Zhang, J. Tian, Z. Ren, W. Shi, Z. Zhang. 2016. High performance Thin-film Composite (TFC) Forward Osmosis (FO) Membrane Fabricated on Novel Hydrophilic Disulfonated Poly (Arylene Ether Sulfone) Multiblock Copolymer/Polysulfone Substrate. Journal of Membrane Science. 520: 529-539.

T. Sirinupong, W. Youravong, D. Tirawat, W. J. Lau, G. S. Lai, A. F. Ismail. 2017. Synthesis and Characterization of Thin Film Composite Membranes Made of PSF-TiO2/GO Nanocomposite Substrate for Forward Osmosis Applications. Arabian Journal of Chemistry. 11: 1144-1153.

D. Emadzadeh, W. J. Lau, A. F. Ismail. 2013. Synthesis of Thin Film Nanocomposite Forward Osmosis Membrane with Enhancement in Water Flux without Sacrificing Salt Rejection. DES. 330: 90-99.

B. Khorshidi, T. Thundat, D. Pernitsky, M. Sadrzadeh. 2017. Permeation Properties of Thin Film Composite Polyamide Membrane. Journal of Membrane Science. 535: 248-257.

B. Jeong, E. M. V Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. K. Ghosh, A. Jawor. 2007. Interfacial Polymerization of Thin Film Nanocomposites : A New Concept for Reverse Osmosis Membranes. J. Memb. Sci. 294: 1-7.

G. S. Lai, W. J. Lau, P. S. Goh, A. F. Ismail, N. Yusof, Y. H. Tan. 2016. Graphene Oxide Incorporated Thin Film Nanocomposite Nanofiltration Membrane for Enhanced Salt Removal Performance. DES. 387: 14-24.

M. Rezaei-dashtarzhandi, M. H. Sarrafzadeh, P. S. Goh, W. J. Lau, A. F. Ismail. 2018. Development of Novel Thin Film Nanocomposite Forward Osmosis Membranes Containing Halloysite/Graphitic Carbon Nitride Nanoparticles Towards Enhanced Desalination Performance. DES. 447: 18-28.

M. R. Teixeira, M. J. Rosa, M. Nyström. 2005. The Role of Membrane Charge on Nanofiltration Performance. Journal of Membrane Science. 265: 160-166.

N. Ma, J. Wei, R. Liao, C. Y. Tang, 2012. Zeolite-polyamide Thin Film Nanocomposite Membranes : Towards Enhanced Performance for Forward Osmosis. Journal of Membrane Science. 405-406: 149-157.

Downloads

Published

2019-07-15

How to Cite

Abdul Aziz, A., Goh, P. S., Azali, M. A., Zainal Abidin, M. N., & Abu Ba’dah, M. H. (2019). Protonated Carbon Nitride Incorporated Polyamide Thin Film Nanocomposite for Reverse Osmosis Desalination. Journal of Applied Membrane Science &Amp; Technology, 23(2). https://doi.org/10.11113/amst.v23n2.153

Issue

Section

Articles