Effect of Solvent Evaporation Time and Casting Thickness on the Separation Performance of Cellulose Acetate Butyrate Blend Membrane
DOI:
https://doi.org/10.11113/amst.v23n2.151Abstract
Global warming and climate change due to greenhouse gases (GHGs) emission, mostly carbon dioxide (CO2), have induced global efforts to minimize the concentration of atmospheric CO2. To reduce the effects of this problem, membrane technology is selected for the separation of CO2 due to the energy efficiency and economic advantages exhibited. In this study, the chosen polymeric material, cellulose acetate butyrate (CAB) is optimized using a wet phase inversion method with various molecular weight and different casting conditions due to its outstanding film-forming specifications and capabilities of fabricating a defect-free layer of neat membrane. The membrane was synthesized by blending three different molecular weights (Mn) of 12,000, 30,000 and 70,000 at different casting thickness, 150 µm to 300 µm and solvent evaporation time of 3.5 to 5 min. The results of these predominant parameters were then utilized to determine a high performance CAB membrane suitable for an enhanced CO2/Nitrogen (N2) separation. Eventually, a high separation performance CAB membrane was successfully synthesized with a CO2/N2 selectivity of 1.5819 ± 0.0775 when the solvent evaporation time and casting thickness was optimized at 4.5 min and 300 µm, respectively. Through this study, an improved understanding between membrane casting conditions and membrane performance has been achieved, for future development and progress.
References
Sreedhar, I., Vaidhiswaran, R., Kamani, B. M., Venugopal, A. 2017. Process and Engineering Trends in Membrane based Carbon Capture. J. Renew. Sustain Ener. 68: 659-684.
Lee, R. J., Jawad, Z. A., Ahmad, A. L., Ngo, J. Q., Chua, H. B. 2017. Improvement of CO2 /N2 Separation Performance by Polymer Matrix Cellulose Acetate Butyrate. IOP Conference Series: J. Mat. Sci. Eng. 206: 012072.
IEAGHG. 2014 Assessment of Emerging CO2 Capture Technologies and Their Potential to Reduce Costs.
Zhang, Y., Sunarso, J., Liu, S., Wang, R. 2013. Current Status and Development of Membranes for CO2/CH4 Separation: A Review. Int. J. GHG Control. 12: 84-107.
Ahmad, Olatunji S. Y., Jawad, Z. A. 2017. Thickness Effect on the Morphology and Permeability of CO2/N2 Gases in Asymmetric Polyetherimide Membrane. J. Phys. Sci. 28: 201-213.
Jawad, Z., A. L. Ahmad, S. C. Low, Zein, S. 2015. Incorporation of Inorganic Carbon Nanotubes Fillers into the Ca Polymeric Matrix for Improvement in Co2/N2 Separation. J. Nanos. 11: 69-79.
Firpo, G., Angeli, E., Repetto, L., Valbusa, U. 2015. Permeability thickness Dependence of Polydimethylsiloxane (PDMS) Membranes. J. Membr Sci. 481: 1-8.
Iqbal, M., Man, Z., Mukhtar, H., Dutta, B. K. 2008. Solvent Effect on Morphology and CO2/CH4 Separation Performance of Asymmetric Polycarbonate Membranes. J. Membr Sci. 318: 167-175.
Hołda, A. K., Aernouts, B., Saeys, W., Vankelecom, I. F. J. 2013. Study of Polymer Concentration and Evaporation Time as Phase Inversion Parameters for Polysulfone-based SRNF Membranes. J. Membr Sci. 442: 196-205.
Haponska, M., Trojanowska, A., Nogalska, A., Jastrzab, R., Gumi, T., Tylkowski, B. 2017. PVDF Membrane Morphology—Influence of Polymer Molecular Weight and Preparation Temperature. J. Polym. 9: 718.
Ahmad, A. L., Jawad, Z. A., Low, S. C., Sharif Zein, S. H. 2013. The Functionalization of Beta-cyclodextrins on Multi Walled Carbon Nanotubes: Effects of the Dispersant and Non Aqueous Media. Current Nanoscience. 9: 93-102.
Shan, M., Xue, Q., Jing, N., Ling, C., Zhang, T., Yan, Z., Zheng, J. 2012. Influence of Chemical Functionalization on the CO2/N2 Separation Performance of porous Graphene Membranes. J. Nanoscale. 4: 5477-5482.
Lee, R. J., Jawad, Z. A., Ahmad, A. L., Chua, H. B. 2018. Incorporation of Functionalized Multi-walled Carbon Nanotubes (MWCNTs) into Cellulose Acetate Butyrate (CAB) Polymeric Matrix to Improve the CO2/N2 Separation. Process Safety and Environmental Protection. 117: 159-167.
Lalia, B. S., Kochkodan, V., Hashaikeh, R., Hilal, N. 2013. A Review on Membrane Fabrication: Structure, Properties and Performance Relationship. J. Desal. 326: 77-95.
Ye, F., J. M. Zhang, and J. Zhang. 2015. Gas Separation Properties of Cellulose Acetate Butyrate/Mwcnts Mixed Matrix Membranes. Acta Polymerica Sinica. 12: 1396-1401.
Khursheed, A. 2007. Scanning Electron Microscope.
Georg Ramer, Lendl., B., 2013. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy. Encyclopedia of Analytical Chemistry,
Yiming Zeng, Zhigang Wang, Lijun Wan, Yanqiao Shi, Guanwen Chen, Bai., C. 2003. Surface Morphology and Nodule Formation Mechanism of Cellulose Acetate Membranes by Atomic Force Microscopy. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China.
Jawad, Z., A. L. Ahmad, S. C. Low, Zein, S. 2015. Influence of Solvent Exchange Time on Mixed Matrix Membrane Separation Performance for CO2/N2 and a Kinetic Sorption Study. J. Membr Sci. 476: 590-601.
Pakizeh, M., Mansoori, S. A. A., Pourafshari Chenar, M., Namvar-Mahboub, M. 2013. Modification of PSf Membrane Nanostructure using Different Fabrication Parameters and Investigation of the CO2 Separation Properties of PDMS-Coated PSf Composite Membranes. Brazilian J. Chem Eng. 30: 345-354.
Xing, D. Y., Peng, N., Chung, T.-S. 2010. Formation of Cellulose Acetate Membranes via Phase Inversion Using Ionic Liquid, [BMIM]SCN, As the Solvent. J. Ind. Eng Chem Res. 49: 8761-8769.
Lee, R. J., Jawad, Z. A., Ahmad, A. L., Chua, H. B. 2018. Incorporation of Functionalized Multi-walled Carbon Nanotubes (MWCNTs) into Cellulose Acetate Butyrate (CAB) Polymeric Matrix to Improve the CO2/N2 Separation. J. Process Saf. Environ. 117: 159-167.
Du, J. R., Peldszus, S., Huck, P. M., Feng, X. 2009. Modification of Poly(vinylidene fluoride) Ultrafiltration Membranes with Poly(vinyl alcohol) for Fouling Control in Drinking Water Treatment. J. Water Res. 43: 4559-4568.
Jami'an, H. Hasbullah, F. Mohamed, N. Yusof, N. Ibrahim, Ali, R. R. 2017. Effect of Evaporation Time on Cellulose Acetate Membrane for Gas Separation. IOP Conference Series: J. Ear. Env. Sci. 36.
Altun, V., Remigy, J.-C., Vankelecom, I. F. J. 2017. UV-cured Polysulfone-based Membranes: Effect of Co-solvent Addition and Evaporation Process on Membrane Morphology and SRNF Performance. J. Membr Sci. 524: 729-737.
Lavorgna, M., Romeo, V., Martone, A., Zarrelli, M., Giordano, M., Buonocore, G. G., Qu, M. Z., Fei, G. X., Xia, H. S. 2013. Silanization and Silica Enrichment of Multiwalled Carbon Nanotubes: Synergistic Effects on The Thermal-mechanical Properties of Epoxy Nanocomposites. European Poly J. 49: 428-438.
Suttiwijitpukdee, N., Sato, H., Zhang, J., Hashimoto, T., Ozaki, Y. 2011. Intermolecular Interactions and Crystallization Behaviors of Biodegradable Polymer Blends between Poly (3-hydroxybutyrate) and Cellulose Acetate Butyrate Studied by DSC, FT-IR, and WAXD. J. Polym. 52: 461-471.
Lou, Y., Liu, G., Liu, S., Shen, J., Jin, W. 2014. A Facile Way to Prepare Ceramic-supported Graphene Oxide Composite Membrane via Silane-graft Modification. J. Appl. Surf. Sci. 307: 631-637.
M. Mubashir, Y. Y. Fong, C. T. Leng, Keong, L. K. 2018. Enhanced Gases Separation of Cellulose Acetate Membrane Using N-Methyl-1-2 Pyrrolidone as Fabrication Solvent. Intl. J. A. Mech. Eng. 15: 4978-4986.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.