Improved Hydrophilicity of Membrane by Ethylenediaminetetraacetic Acid Modification

Authors

  • M. K. Chan Center of Water Research, Faculty of Engineering and the Built Environment, SEGi University, 9 Jalan Teknologi, Taman Sains Selangor, PJU 5, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia
  • M. Letchumanan Center of Water Research, Faculty of Engineering and the Built Environment, SEGi University, 9 Jalan Teknologi, Taman Sains Selangor, PJU 5, Kota Damansara, 47810 Petaling Jaya, Selangor, Malaysia

DOI:

https://doi.org/10.11113/amst.v23n1.135

Abstract

Hydrophilic membranes exhibit good flux and low fouling tendency, which are the crucial criteria for a good membrane.  Attempts have been done by researchers over the past decades to enhance the hydrophilicity of membrane by using nanoparticles and grafting. However, these processes are tedious and costly. This study improves the hydrophilicity of cellulose acetate (CA) membranes by using ethylenediaminetetraacetic acid (EDTA) via simple blending method. Recent study showed that fouled membrane which was cleaned by EDTA exhibited high water flux performance. However, the use of EDTA in formulating a membrane has not been disclosed elsewhere. Thus, the objective of this study is to conduct a series of experiments to find out the role of EDTA in improving the hydrophilicity of CA membranes. Membranes with varying EDTA concentration were prepared via dry-wet phase inversion technique. Contact angle, porosity and water flux of the resultant membranes were determined. Additionally, the morphologies of the membranes were imaged using FESEM. Results showed that EDTA was a good pore former, which can be seen clearly from FESEM images. This explains for the high porosity properties in CA-EDTA membranes.  Membrane with 1 wt% of EDTA showed the highest water flux, which was ~15 L/(h.m2). Meanwhile, no water flux was observed after three hours when pure CA membrane was used in a dead-end filtration cell. In conclusion, EDTA is a promising additive in improving the hydrophilicity of membranes.

References

F. Beyer, J. Laurinonyte, A. Zwijnenburg, A. J. M. Stams, C. M. Plugge. 2017. Membrane Fouling and Chemical Cleaning in Three Full-scale Reverse Osmosis Plants Producing Demineralized Water. J. Eng. 2017: 6356751.

V. V. Mistry, J. L. Maubois. 2017. Chapter 27-Application of Membrane Separation Technology to Cheese Production. Cheese. Fourth Edition. Academic Press. 677-697.

L. Zhang, C. Shan, X. Jiang, X. Li, L. Yu. 2018. High Hydrophilic Antifouling Membrane Modified with Capsaicin-mimic Moieties via Microwave Assistance (MWA) for Efficient Water Purification. Chem. Eng. J. 338: 688-699.

L. A. Goetz, B. Jalvo, R. Rosal., A. P. Mathew. 2016. Superhydrophilic Anti-fouling Electrospun Cellulose Acetate Membranes Coated with Chitin Nanocrystals for Water Filtration. J. Membr. Sci. 510: 238-248.

J. Benavente, M. E. Garcia, N. Urbano, J. M. Lopez-Romero, R. C. Contreras-Caceres, M. A. Casado-Rodriguez, A. Moscoso, J. Hierrezuelo. 2017. Inclusion of Silver Nanoparticles for Improving Regenerated Cellulose Membrane Performance and Reduction of Biofouling. Int. J. Biol. Macromol. 103: 758-763.

B. S. Pereira, L. O. R. Moreti, M. F. Silva, R. Bergamasco, A. F. B. Piccioli, E. E. Garcia, W. V. Costa, E. A. G. Pineda, D. M. F. Oliveira, A. A. W. Hechenleitner. 2017. Permeability Increase in Ultrafiltration Cellulose Acetate Membrane Containing Silver Nanoparticles. Mat. Res. 20: 887-891.

S. D. Neelapala, A. K. Nair, P. E. JagadeeshBabu. 2017. Synthesis and Characteristic of TiO2 Nanofibre/Cellulose Acetate Nanocomposite Ultrafiltration Membrane. J. Exp. Nanosci. 12: 152-165.

A. Jayalakshmi, I. C. Kim, Y. N. Kwon. 2015. Cellulose Acetate graft-(glycidlmethacrylate-g-PEG) for modification of AMC Ultrafiltration Membranes to Mitigate Organic Fouling. RSC Adv. 5: 48290-48300.

L. Masse, J. P. Bargues, M. Mondor, L. Deschenes, G. Talbot. 2015. Efficiency of EDTA, SDS, and NaOH Solutions to Clean RO Membranes Processing Swine Wastewater. Sep. Sci. Technol. 50: 2509-2517.

F. Beyer, J. Laurinonyte, A. Zwijnenburg, A. J. M. Stams, C. M. Plugge. 2017. Membrane Fouling and Chemical Cleaning in Three Full-scale Reverse Osmosis Plants Producing Demineralized Water. Journal of Engineering. Article ID 6356751, 14 pages.

K. L. Tu, A. R. Chivas, L. D. Nghiem. 2015. Chemical Cleaning Effects on Properties and Separation Efficiency of an RO Membrane. Membr. Water Treat. 6: 141-160.

X. Zhang, S. Yang, B. Yu, Q. Tan, X. Zhang, H. Cong. 2018. Advanced Modified Polyacrylonitrile Membrane with Enhanced Adsorption Property for Heavy Metal Ions. Sci. Rep. 8: 1260.

Dogan, H., Hilmioglu, N. D. 2009. Dissolution of Cellulose with NMMO by Microwave Heating. Carbohydr. Polym. 75: 90-94.

M. K. Chan, H. H. Teo. 2013. Industrial Design, MY 12-01436-0101.

C. Pertile, M. Zanini, C. Baldasso, M. Z. Andrade, I. C. Tessaro, 2018. Evaluation of Membrane Microfiltration Fouling in Landfill Leachate Treatment. Revista Materia. 23.

A. Sagle, B. Freeman. 2004. Fundamentals of Membranes for Water Treatment. The Future of Desalination in Texas: Texas Water Development Board.

M. K. Chan, A. Idris. 2012. Modification of Cellulose Acetate Membrane Using Monosodium Glutamate Additives Prepared by Microwave Heating. J. Ind. Eng. Chem. 18: 2115-2123.

O. Kaygili, T. Ates, S. Keser, A. A. Al-Ghamdi, F. Yakuphanoglu. 2014. Controlling of Dielectric Properties of Hydroxyapatite by Ethylenediamine Tetraacetic acid (EDTA) for Bone Healing Applications. Spectrochim. Acta A. 129: 268-273.

Downloads

Published

2018-12-05

How to Cite

Chan, M. K., & Letchumanan, M. (2018). Improved Hydrophilicity of Membrane by Ethylenediaminetetraacetic Acid Modification. Journal of Applied Membrane Science &Amp; Technology, 23(1). https://doi.org/10.11113/amst.v23n1.135

Issue

Section

Articles