Composite Proton Electrolyte Membranes C Poly Ether-Ether Ketone (SPEEK) at Various Amount of Mesoporous Phosphotungstic Acid (mPTA) for Hydrogen Fuel Cell Application
DOI:
https://doi.org/10.11113/amst.v24n3.185Abstract
Polymer electrolyte membrane fuel cells (PEMFC), also known as proton exchange membrane fuel cells utilise polymer electrolyte membranes (PEMs) to conduct protons for ion-exchange purposes. Nafion is a common polymeric material to be used as PEM for fuel cells. However, Nafion has major weaknesses such as low proton conductivity under anhydrous conditions at elevated temperatures due to water evaporation and continuous need for water management, low tolerance for fuel impurities and high cost. This study fabricates a newly composite PEM by blending SPEEK and mesoporous phosphotungstic acid (mPTA) at various loading in order to obtain the most favourable PEMFC power output. SP/2.0mPTA membrane has shown outstanding properties in terms of dense structure, 35.75% of water uptake and expected an elemental mapping of 76.20% Tungsten and 23.80% Phosphorus. Even with a lower proton conductivity of 3.502 mScm-1, this membrane has a higher power density of 154.4 mW/cm2 compared to the other four membranes. Owing to the unique characteristics of the as-synthesized mPTA such as high surface area, porous structure, good thermal and chemical resistance, SPEEK-mPTA membrane is one of the promising materials for PEMFC applications. Â
Â
References
M. K. Mahapatra and P. Singh. 2014. Chapter 24 - Fuel Cells: Energy Conversion Technology, in Future Energy. 2: 511-547.
M. B. Karimi, F. Mohammadi, and K. Hooshyari. 2019. Recent Approaches to Improve Nafion Performance for Fuel Cell Applications: A Review. International Journal of Hydrogen Energy. 44(54): 28919-28938.
K. Charradi. 2019. Amelioration of PEMFC Performance at High Temperature by iIncorporation of Nanofiller (Sepiolite/layered Double Hydroxide) in Nafion Membrane. International Journal of Hydrogen Energy. 44(21): 10666-10676.
A. E. Aslan Gumusdereli, and A. M. Soydan. 2019. Producing of Imidazol Functional SiO2 Nanoparticles /Nafion Nanocomposite Membranes for PEMFC Applications. Journal of the Faculty of Engineering and Architecture of Gazi University. 34(1): 351-363.
V. Ivanov. 2018. Perspective Non-fluorinated and Partially Fluorinated Polymers for Low-Temperature PEM FC, in Proton Exchange Membrane Fuel Cell.
O. Z. Sharaf. and M. F. Orhan. 2014. An Overview of Fuel Cell Technology: Fundamentals and Applications. Renewable and Sustainable Energy Reviews. 32: 810-853.
S. Yoon. 2019. Synthesis of Sulfonation Poly(N-propylsulfonicacid isatin biphenylene) for Polymer Electrolyte Membrane Fuel Cell Containing SiO2 Nanocomposite Membrane. Journal of Nanoscience and Nanotechnology. 19(3): 1562-1566.
A. R. Kim. 2018. Sulfonated Poly Ether Sulfone/Heteropoly Acid Composite Membranes as Electrolytes for the Improved Power Generation of Proton Exchange Membrane Fuel Cells. Composites Part B-Engineering. 155: 272-281.
Y. Rattanachai. 2018. Characterization of of Nafion XL Membrane for PEMFC after VUV Degradation and Titanium Nitride Coating. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. 436: 292-297.
A. A. Abdul Hamid. 2013. Effect of Casting Solvents and Filler Quantity on the Preparation and Physiochemical Properties of PVC - Bentonite Based Composite Polymeric Membranes. Journal Chemical Society of Pakistan.
H. Ilbeygi. 2019. Highly Crystalline Mesoporous Phosphotungstic Acid: A High-Performance Electrode Material for Energy-Storage Applications. Angew Chem Int Ed Engl. 58(32): 10849-10854.
N. Awang, J. Jaafar, and A. F. Ismail. 2018. Thermal Stability and Water Content Study of Void-Free Electrospun SPEEK/Cloisite Membrane for Direct Methanol Fuel Cell Application. Polymers. 10(2).
H. Ilbeygi. 2019. Highly Crystalline Mesoporous Phosphotungstic Acid: A High-Performance Electrode Material for Energy-Storage Applications. Angewandte Chemie International Edition. 58(32): 10849-10854.
A. Stassi. 2015. Enhancement of Oxygen Reduction and Mitigation of Ionomer Dry-Out Using Insoluble Heteropoly Acids in Intermediate Temperature Polymer-Electrolyte Membrane Fuel Cells. Energies. 8(8): 7805-7817.
M. J. Parnian, S. Rowshanzamir, and J. Alipour Moghaddam. 2018. Investigation of Physicochemical and Electrochemical Properties of Recast Nafion Nanocomposite Membranes Using Different Loading of Zirconia Nanoparticles for Proton Exchange Membrane Fuel Cell Applications. Materials Science for Energy Technologies. 1(2): 146-154.
Y. Yang. 2007. The Influence of Nano-sized TiO2 Fillers on the Morphologies and Properties of PSF UF Membrane. Journal of Membrane Science. 288(1-2): 231-238.
Q. Zhao. 2018. Preparation of High Strength Poly(vinylidene fluoride) Porous Membranes With Cellular Structure Via Vapor-Induced Phase Separation. Journal of Membrane Science. 549: 151-164.
M. Y. Chia. 2020. Study on Improvement of the Selectivity of Proton Exchange Membrane via Incorporation of Silicotungstic Acid-doped Silica into SPEEK. International Journal of Hydrogen Energy. 45(42): 22315-22323.
P. Salarizadeh. 2016. Influence of Amine-functionalized Iron Titanate as Filler for Improving Conductivity and Electrochemical Properties of SPEEK Nanocomposite Membranes. Chemical Engineering Journal. 299: 320-331.
M. J. Parnian, F. Gashoul, and S. Rowshanzamir. 2017. Studies on the SPEEK Membrane with Low Degree of Sulfonation as a Stable Proton Exchange Membrane for Fuel Cell Applications. Iranian Journal of Hydrogen & Fuel Cell. 3(3): 221-232.
Parisa Salarizadeh, M. J. a. S. P. 2017. Enhancing the Performance of SPEEK-polymer Electrolyte Membrane using Functionalised TiO2 Nanoparticles with Proton Hoping Sites. Royal Society of Chemistry.
H. Junoh a, J. J., N. A. M. Nor, Nuha Awang, M. N. A. M. Norddin, A. F. Ismail, M. H. D. Othman, Mukhlis and F. A. A. Rahman, N. Yusof, W. N. W. Salleh, R. Naim. 2018. Fabrication of Nanocomposite Membrane via Combined Electrospinning and Casting Technique for Direct Methanol Fuel Cell. Journal of Membrane Science and Research. 4.
N. Awang, J. Jaafar, and A. F. Ismail. 2018. Thermal Stability and Water Content Study of Void-free Electrospun SPEEK/Cloisite Membrane for Direct Methanol Fuel Cell Application. Polymers (Basel). 10(2).
A. hamid. 2013. Effect of Casting Solvents and Filler Quantity on the Preparation and Physiochemical Properties of PVC - Bentonite Based Composite Polymeric
Membranes. Journal Chemical Society of Pakistan. 35.
M. Gnus, G. Dudek, and R. Turczyn. 2018. The Influence of Filler Type on the Separation Properties of Mixed-matrix Membranes. Chem Zvesti. 72(5): 1095-1105.
R. Sigwadi. 2019. The Proton Conductivity and Mechanical Properties of Nafion(R)/ ZrP Nanocomposite Membrane. Heliyon. 5(8): e02240.
R. Sigwadi. 2013. Zirconia Based/Nafion Coposite Membranes for Fuel Cell Applications.
H. Zhang. 2008. Composite Membranes Based on Highly Sulfonated PEEK and PBI: Morphology Characteristics and Performance. Journal of Membrane Science. 308(1): 66-74.
L. Li, L. Xu, and Y. Wang. 2003. Novel Proton Conducting Composite Membranes for Direct Methanol Fuel Cell. Materials Letters. 57(8): 1406-1410.
H. Junoh. 2020. Performance of Polymer Electrolyte Membrane for Direct Methanol Fuel Cell Application: Perspective on Morphological Structure. Membranes (Basel). 10(3).
T. Yang. 2018. A Graphene Oxide Polymer Brush Based Cross-linked Nanocomposite Proton Exchange Membrane for Direct Methanol Fuel Cells. RSC Advances. 8(28): 15740-15753.
L. Du. 2012. SPEEK Proton Exchange Membranes Modified with Silica Sulfuric Acid Nanoparticles. International Journal of Hydrogen Energy. 37(16): 11853-11861.
B. Choi. 2014. The Effect of Cathode Structures on Nafion Membrane Durability. Journal of The Electrochemical Society. 161(12): F1154-F1162.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.