Morphological and Physical Study of La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) Flat Membranes Modified by Polyethylene Glycol (PEG)

Authors

  • A. M. Ilham Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • N. Khoiroh Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • S. Jovita Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • R. M. Iqbal Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia Department of Chemistry, Faculty of Science, Universitas Palangka Raya (UPR), Jl. Kampus UPR Tunjung Nyaho, Palangka Raya 73112, Indonesia
  • L. Harmelia Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • S. D. Nurherdiana Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus
  • W. P. Utomo Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
  • H. Fansuri Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia http://orcid.org/0000-0001-7255-0931

DOI:

https://doi.org/10.11113/amst.v22n2.131

Abstract

The aim of this work is to study the effect of polyethylene glycol (PEG) on the modification of microstructure formation correlated with the mechanical strength properties of perovskite-based membrane in form of a flat sheet. LSCF 7328 flat membrane was potentially promoted as an oxygen separator and catalyst for partial oxidation of methane reaction at high temperature. In this study, the phase-inversion followed by sintering process was used as the membrane fabrication method using varied PEG concentration of 0.55, 1.00, and 3.00 wt% with different molecular weight, i.e., PEG 300, 600, 1500, and 4000 Da for each PEG concentration. The result of morphology observation shows that almost every membrane hasthe asymmetric structure with finger-like pores and thin dense layer. Increasing PEG concentration as well as molecular weight increases pore size and affects on porosity, pore's volume, and physical properties of membrane. The largest pore size, pore volume and porosity of the membrane after sintering were found in the addition of 3.00% PEG 4000 (Da) additive with the value of 110.45 μm, 81.34 ml.g-1 and 120.6%, respectively. In addition, the mechanical properties of membrane were tested using the Vickers micro hardness method with the greatest value found in the addition of 3.00% PEG 1500 (Da) additive with the value of 13.58 Hv and the lowest is 3.00% PEG 4000 (Da) with the value of 1.2 Hv.

Author Biographies

A. M. Ilham, Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Final year Bachelor Student

Department of Chemistry

Faculty of Science

Institut Teknologi Sepuluh Nopember (ITS)

N. Khoiroh, Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Final year Bachelor Student

Department of Chemistry

Faculty of Science

Institut Teknologi Sepuluh Nopember (ITS)

S. Jovita, Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Bachelor Student

Department of Chemistry

Faculty of Science

Institut Teknologi Sepuluh Nopember (ITS)

R. M. Iqbal, Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia Department of Chemistry, Faculty of Science, Universitas Palangka Raya (UPR), Jl. Kampus UPR Tunjung Nyaho, Palangka Raya 73112, Indonesia

Research Assitant

Department of Chemistry

Faculty of Science

Institut Teknologi Sepuluh Nopember (ITS)

L. Harmelia, Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Research Assitant

Department of Chemistry

Faculty of Science

Institut Teknologi Sepuluh Nopember (ITS)

S. D. Nurherdiana, Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus

Research Assitant

Department of Chemistry

Faculty of Science

Institut Teknologi Sepuluh Nopember (ITS)

W. P. Utomo, Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Lecturer

Department of Chemistry

Faculty of Science

Institut Teknologi Sepuluh Nopember (ITS)

H. Fansuri, Department of Chemistry, Faculty of Science, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia

Associate Professor

Department of Chemistry

Faculty of Science

Institut Teknologi Sepuluh Nopember (ITS)

References

B. Meng, Z. Wang, X. Tan and S. Liu. 2009. SrCo0.9Sc0.1O3 Perovskite Hollow Fibre Membrane for Air Separation at Intermediate Temperatures. J. Eur. Ceram. Soc. 29: 2815-2822.

X. Meng, Y. Shang, B. Meng, N. Yang, X. Tan, J. Sunarso and S. Liu. 2016. Bi-functional Performances of BaCe0.95Tb0.05O3-δ-based Hollow Fiber Membranes for Power Generation and Hydrogen Permeation. J. Eur. Ceram. Soc. 36(16): 4123-4129.

E. Saljoughi, M. Sadrzadeh and T. Mohammadi. 2009. Effect of Preparation Variables on Morphology and Pure Water Permeation Flux Through Asymmetric Cellulose Acetate Membranes. J. Membr. Sci. 326: 627-634.

Y. Takahashi, A. Kawahara, T. Suzuki, M. Hirano and W. Shin. 2010. Perovskite Membrane of La1 xSrxTi1 yFeyO3 δ for Partial Oxidation of Methane to Syngas. Solid State Ionics. 181: 300-305.

N. Droushiotis, M.H.D. Othman, U. Doraswami, Z. Wu, G. Kelsall and K. Li. 2009. Novel Co-extruded Electrolyte-anode Hollow Fibres for Solid Oxide Fuel Cells. Electrochem. Commun. 11(9): 1799-1802.

Y. Teraoka. 1991. Influence of Constituent Metal Cations in Substituted LaCoO3 on Mixed Conductivity and Oxygen Permeability. Solid State Ionics. 48: 207-212.

J. Sunarso S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, Y. S. Lin and J. C. Diniz da Costa. 2008. Mixed Ionic-electronic Conducting (MIEC) Ceramic-based Membranes for Oxygen Separation. J. Memb. Sci. 320: 13-41.

X. Tan, L. Shi, G. Hao, B. Meng and S. Liu. 2012. La0.7Sr0.3FeO3-δ Perovskite Hollow Fiber Membranes for Oxygen Permeation and Methane Conversion. Sep. Purif. Technol. 96: 89-97.

X. Tan and S. Liu. 2011 Morphology Control of Perovskite Hollow Fibre Membranes for Oxygen Separation Using Different Bore Fluids. J. Memb. Sci. 378: 308-318.

H. Fansuri, M. I. Syafi’i, S. Romdoni, A. D. Masyitoh, W. P. Utomo, D. Prasetyoko, N. Widiastuti, I. K. Murwani and Subaer. 2017. Preparation of Dense BaxSr1 xCo0.8Fe0.2O3 Membranes: Effect of Ba2+ Substituents and Sintering Method to the Density, Hardness and Thermal Expansion Coefficient of the Membranes. Adv. Mater. Lett. 8(7): 799-806.

R. M. Iqbal, S. D. Nurherdiana, D. Hartanto, M. H. D. Othman and H. Fansuri. 2018. Morphological Control of La0.7Sr0.3Co0.2Fe0.8O3-δ and La0.7Sr0.3MnO3-δ Catalytic Membrane using PEG-H2O Additive. IOP Conf. Ser.: Mater. Sci. Eng. 348: 012008.

Q. Liao, Y. Chen, Y. Wei, L. Zhou and H. Wang. 2014. Performance of U-shaped BaCo0.7Fe0.2Ta0.1O3-δ Hollow-fiber Membranes Reactor with High Oxygen Permeation for Methane Conversion. Chem. Eng. J. 237: 146-152.

F. Y. Humairo, C. S. Ong, N. Widiastuti, A. F. Ismail, S. A. Putri and J. Jafar. 2016 PVDF/TiO2/PEG Hollow Fiber Membrane for Oily Wastewater Treatment at Various Concentration of Oily Wastewater. IPTEK Journal of Proceedings Series. 2(1): B208-57.

S. A. Putri, F. Y. Humairo, N. Widiastuti, C. S. Ong, J. Jaafar and A. F. Ismail. 2016. PVDF/PEG/TiO2 Hollow Fiber Membrane for Lead (II) Removal. IPTEK Journal of Proceedings Series. 2(1): C210-61.

S. D. Nurherdiana, N. Sholichah, R. M. Iqbal, M. S. Sahasrikirana, W. P. Utomo, S Akhlus, Nurlina and H. Fansuri. 2017. Preparation of La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) by Combination of Mechanochemical and Solid State Reaction. Key Engineering Materials. 744: 399-403.

E. P. Setyaningsih, M. Machfudzoh, W. P. Utomo, and H. Fansuri. 2016. Preparation of CaTiO3 Asymmetric Membranes Using Polyetherimide as Binder Polymer. Indones. J. Chem. 16(1): 20-24.

E. Saljoughi, M. Amirilargani, and T. Mohammadi. 2010. Effect of PEG Additive and Coagulation Bath Temperature on the Morphology, Permeability and Thermal/Chemical Stability of Asymmetric CA Membranes. Desalination. 262(1-3): 72-78.

N. N. Aminudin, H. Basri, Z. Harun, M. Z. Yunos and G. P. Sean. 2013. Comparative Study on Effect of PEG and PVP as Additives on Polysulfone (PSF) Membrane Structure and Performance. J. Teknol. 65(4): 47-51.

R. M. Iqbal, S. D. Nurherdiana, M. S. Sahasrikirana, L. Harmelia, W. P. Utomo, E. P. Setyaningsih and H. Fansuri. 2018. The Compatibility of NiO , CeO2 and NiO-CeO2 as Coating on La0.6Sr0.4Co0.2Fe0.8O3-δ, La0.7Sr0.3Co0.2Fe0.8O3-δ and La0.7Sr0.3MnO3-δ Ceramic Membranes and Their Mechanical Properties. IOP Conf. Ser.: Mater. Sci. Eng. 367: 011002.

Downloads

Published

2018-11-21

How to Cite

Ilham, A. M., Khoiroh, N., Jovita, S., Iqbal, R. M., Harmelia, L., Nurherdiana, S. D., Utomo, W. P., & Fansuri, H. (2018). Morphological and Physical Study of La0.7Sr0.3Co0.2Fe0.8O3-δ (LSCF 7328) Flat Membranes Modified by Polyethylene Glycol (PEG). Journal of Applied Membrane Science &Amp; Technology, 22(2). https://doi.org/10.11113/amst.v22n2.131

Issue

Section

Articles