Performance of Nanofiltration Membrane for Printing Wastewater Treatment
DOI:
https://doi.org/10.11113/amst.v22n1.127Abstract
Almost every manufacturing process is the major origin of wastewater with certain characteristic. Printing facility provides a wide range of waste component that is harmful to the environment and people. Those harmful waste component contains high concentration of heavy metals and dye. This paper presents one of the most promising methods to remove the heavy metals and dyes from a printing wastewater before discharging to the environment. The feasibility of commercially available NF270 membrane to treat both heavy metals and dye was thoroughly investigated. The study was carried out using a cross-flow nanofiltration membrane system at operating pressure and temperature set at 5 bar and 24 ËšC, respectively. Â Experimental results showed that the permeate flux of NF270 is decreased from 6.2 to 5.0 L/m2.h after 1-h operation. Whilst, the rejection of both iron and zinc ions could be obtained up to 96.9% and 97.8%, respectively. Additionally, almost complete elimination of colour (99.6%) could be achieved using NF270 membrane. Thus, it can be concluded that the commercial NF270 membrane is promising in removing both heavy metal ions and dye from printing wastewater.
References
J. S. Kiurski, Kiurski, B. B. Marić, S. M. Aksentijević, I. B. Oros & V. S. Kecić. 2016. Occupational Hazards in Printing Industry. Int. J. Environ. Sci. Technol. 13(3): 955-972.
C. Li, Y. Liang & Y. Chen. (2005). Combined Ultrafiltration and Suspended Pellets for Lead Removal. Separation and Purif. Technol. 45(3): 213-219.
L. Khannous, A. Elleuch, I. Fendri, N. Jebahi, H. Khlaf & N. Gharsallah. 2015. Treatment of Printing Wastewater by a Combined Process of Coagulation and Biosorption for a Possible Reuse in Agriculture. Desalination and Water Treatment. 57(13): 5723-5729.
M. F. Abid, M. A. Zablouk & A. M. Abid-Alameer. 2012. Experimental Study of Dye Removal from Industrial Wastewater by Membrane Technologies of Reverse Osmosis and Nanofiltration. Iranian Journal of Environmental Health Science & Engineering. 9(1): 17.
X. Zheng & J. Liu. 2006. Dyeing and Printing Wastewater Treatment using Membrane Bioreactor with a Gravity Drain. Desalination. 190(1-3): 277-286.
S. Chakraborty, S. De, J. Basu & S., Das Gupta. 2005. Treatment of a Textile Effluent: Application of a Combination Method Involving Adsorption and Nanofiltration. Desalination. 174(1): 73-85.
K. L. Patil & C. P. Sawant. 2009. An Evaluation of Heavy Metals Content in Dyeing and Printing Industrial Effluents in GIDC Surat: A Statistical Approach. Asian Journal of Chemistry. 21(9): 7097-7100.
D. Bessarabov & Z. Twardowski. 2002. Industrial Application of Nanofiltration-New Perspectives. Membrane Technology. 2002(9): 6-9.
N. Tapas, S. Sunita, P.P. Oathe, & S. N. Kau. 2003. Pre-Treatment of Currency Printing Ink Wastewater Through Coagulation-Flocculation Process. Water, Air, and Soil Pollution. 148(1): 15-30.
N. H. H. Hairom, A. W. Mohammad & A. A. Kadhum. 2014. Nanofiltration of Hazardous Congo Red Dye: Performance and Flux Decline Analysis. Journal of Water Process Engineering. 4: 99-106.
C. Fersi, L. Gzara, M. Dhahbi. 2009. Flux Decline Study for Textile Wastewater Treatment by Membrane Processes. Desalination. 244: 321-332.
M. R. Wiesner, P. Aptel. 1996. Mass Transport and Permeate Flux and Foulind in Pressure-driven Process. Water Treatment Membrane Handbook. McGraw-Hill, New York.
X. Liu, & W. Wang. 2012. The Application of Nanofiltration Technology in Recovery of Ionic Liquids from Spinning Wastewater. Applied Mechanics and Materials. 178-181, 499-502.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.