Carbon Nanotube Incorporated Nanocomposite Membranes for CO2 Removal
DOI:
https://doi.org/10.11113/amst.v17i1.9Abstract
Thin-film nanocomposite (TFN) membranes that consist of multi-walled carbon nanotube (MWNT) incorporated polyamide selective layer formed on polysulfone substrate were developed. The resultant TFN membranes were used for CO2 gas removal. For inclusion into these active layers, a grafting procedure for CNT was established in this study to enhance their hydrophobicity. MWNTs grafted with poly (methyl methacrylate) (PMMA) were synthesized via a micro emulsion polymerization of methyl methacrylate (MMA) in the presence of acid-modified multi-walled carbon nanotubes (c-MWNTs). Subsequently, polyamide TFN membranes containing PMMA–MWNTs were prepared via interfacial polymerization reaction between aqueous and organic phases. The resultants TFN were characterized by using FTIR and SEM. Morphology studies demonstrate that MWNTs have been successfully embedded into the active polyamide layer. The gas selectivity increased about 6.6 times compared to the thin-film composite membrane when using 0.35 w/v% amine in the aqueous phase, 0.28 w/v% trimesoyl chloride (TMC) in organic phase and 0.50g/L PMMA–MWNTs in coating layer.References
L. M. Robeson. 2008. The upper bound revisited. J. Membr. Sci. 346: 390–400
B. H. Jeong, E. M. V.Hoek, Y. Yan, A. Subramani, X. F. Huang, Hurwitz, A. K. Ghosh, and A. Jawor. 2007. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis is membranes. J. Membr. Sci. 294: 1–7.
M. L. Lind, D. E. Suk, T. V. Nguyen, E. M. V. Hoek. 2010. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ. Sci. Technol. 44: 8230–8235.
N. Ma, J. Wei, R. H. Liao, C. Y. Tang. 2012. Zeolite–polyamide thin film nanocomposite membranes: Towards enhanced performance for forward osmosis.
J. Membr. Sci. 405–406: 149–157.
J. H. Choi, J. Jegal, W. N. Kim. 2006. Fabrication and characterization of multi-walled carbon nanotubes/polymer blend membranes. J. Membr. Sci. 284: 406–415.
J. N. Shen, X. C. Zheng, H. M. Ruan, L. G. Wu, J. H. Qiu, C. J. Gao. 2007. Synthesis of AgCl/ PMMA hybrid membranes and their sorption performance of cyclohexane/ cyclohexane. J. Membr. Sci. 304: 118–124.
J. Y. Lai, F. C. Lin, T. T. Wu, D. M. Wang. 1999. On the formation of macro voids in PMMA membranes. J. Membr. Sci. 155: 31–43.
F. Aucella, M. Vigilante, A. Gesuete, G. Maruccio, A. Specchio, L. Gesualdo. 2007. Uraemic itching: do polymethyl methacrylate dialysis membranes play a role. Nephrol. Dial. Transplant. 22: 8–12.
X.-Z. Wei, L.-P. Zhu, H.-Y. Deng, Y.-Y. Xu, B.-K. Zhu, Z.-M. Huang. 2008. New type of nanofiltration membrane based on cross-linked hyper branched polymers. J. Membr. Sci. 323: 278–287.
P. W. Morgan. 1965. Condensation Polymers: By Interfacial and Solution Methods. New York: Interscience Publishers.
J. I. I. Roh, S. Y. Park, J. J. Kim, C. K. Kim. 1998. Effect of polyamide molecular structure on the performance of reverse osmosis membrane. J. Appl. Polym. Sci. 36: 1821–1830.
I. I. J. Roh. 2002. Influence of rupture strength of interfacial polymerized thin film structure on the performance of polyamide composite membrane. J. Membr. Sci. 198: 63–74.
D. A. Samuel. 1989. Structure-property relationship in a thin film composite membrane. J. Membr. Sci. 46: 243–260.
J. Zhao, Z. Wang, J. Wang, S. Wang. 2006. Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes pre-pared by interfacial polymerization. J. Membr. Sci. 283: 346–356.
S. Sridhar, B. Smitha, S. Mayor, B. Prathab, T. M. Aminabhavi. 2007. Gas permeation properties of polyamide membrane prepared by interfacial polymerization. J. Mater. Sci. 42: 9392–9401.
B. H. Jeong, E. M. V. Hoek, Y. Yan, A. Subramani, X. F. Huang, G. Hurwitz, A. K. Ghosh, A. Jawor. 2007. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Membr. Sci. 294: 1–7.
O. M. Ekiner, G. Vassilatos. 1990. Polyaramide hollow fibers for hydrogen/methane separation—spinning and properties. J. Membr. Sci. 53: 259–273.
J. Espeso, A. E. Lozano, J. G. de la Campa, J.de Abajo. 2006. Effect of substituents on the permeation properties of polyamide membranes. J. Membr. Sci. 280: 659–665.
X. Yu, Z. Wang, Z. Wei, S. Yuan, J. Zhao, J. Wang, S. Wang. 2010. Novel tertiary amino containing thin film composite membranes
prepared by interfacial polymerization for CO2 capture. J. Membr. Sci. 362: 265–278.
J. Petersen, K.V. Peinemann. 1997. Novel polyamide composite membranes for gas separation prepared by interfacial polycondensation. J. Appl. Polym. Sci. 63: 1557–1563.
Q. F. An, F. Li, Y. L. Ji , H. L. Chen. 2011. Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes. J. Membr. Sci. 367: 158–165.
J. H. Kim, Y. M. Lee. 2001. Gas permeation properties of poly (amide-6-b-ethyleneoxide)-silica hybrid membranes. J. Membr. Sci. 193: 209–225
Q. Hu, E. Marand, S. Dhingra, D. Fritsch, J. Wen, G. Wilkes. 1997. Poly(amideimide)/TiO2 nano-composite gas separation membranes: fabrication and characterization. J. Membr. Sci. 135: 65–79.
H. L. Cong, J. M. Zhang, M. Radosz, Y.Q. Shen. 2007. Carbon nanotube composite membranes of brominated poly(2,6-diphenyl-1,4-phenylene oxide) for gas separation. J. Membr. Sci. 294: 178–185.
T. H. Weng, H. H. Tseng, M. Y. Wey. 2009. Preparation and characterization of multi-walled carbon nanotube/PBNPI nanocomposite membrane for H2/CH4 separation. Int. J. Hydrogen Energy. 34: 8707–8715.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.