Dehydration of Ethanol/Water Mixture Using Pervaporation and Vapor Permeation Technique
DOI:
https://doi.org/10.11113/amst.v8i1.62Abstract
The demand of bio–ethanol to substitute petroleum–based fuel is continuously increasing, and economic aspect has become an important factor in the design of ethanol dehydration plants. Since it forms an azeotrope at 89.4 mole%, 78°C and atmospheric pressure, further dehydration process is difficult and expensive. In this work, a composite membrane using modified poly vinyl alcohol (PVA) as the active separating layer, and poly–acrylonitrite (PAN) as a supportive layer was employed. Two membrane processes, pervaporation (PV) and vapor permeation (VP) system, were investigated for their dehydration performances in order to produce motor fuel grade ethanol (MFGE). The effects of feed temperature, feed pressure, feed composition, module temperature, and permeate pressure were compared for both systems, and also discussed in detail. Total flux, ethanol flux, and water flux as well as separation factor were also calculated. In general for both systems, the water fluxes decreased dramatically as the feed side ethanol concentrations increased. However, the pervaporation system was affected the most, and this is because of the low diffusivity of water in ethanol. For the separation of azeotrope, water fluxes between 0.06–1.17 kg/m2/hr with separation factor of about 100 were observed in VP whilst the value of 0.10–0.22 kg/m2/hr were obtained with PV. In conclusion, VP has advantages over PV system in terms of separation performances and simplicities of the process.Downloads
Published
2017-11-20
How to Cite
Boontawan, A., Schausberger, P., Bösch, P., & Friedl, A. (2017). Dehydration of Ethanol/Water Mixture Using Pervaporation and Vapor Permeation Technique. Journal of Applied Membrane Science & Technology, 8(1). https://doi.org/10.11113/amst.v8i1.62
Issue
Section
Articles
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.