Effect of Stabilization Conditions on the Fabrication of Carbon Membranes for CO2 Separation

Authors

  • W. N. W. Salleh Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia & Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Bahru, Malaysia
  • A. F. Ismail Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia & Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Bahru, Malaysia
  • M. A. Rahman Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia & Faculty of Petroleum and Renewable Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Bahru, Malaysia

DOI:

https://doi.org/10.11113/amst.v16i1.6

Abstract

Preparation of carbon membranes has rapidly attracted much attention in gas separation processes because of thermal and chemical stabilities and exhibit superior separation performance. Carbon hollow fiber membranes (CHFM)s derived from polymer blend of polyetherimide (PEI) and polyvinylpyrrolidone (PVP) were extensively prepared through stabilization under air atmosphere followed by carbonization under N2 atmosphere. The effects of the stabilization temperature on the morphological structure and gas permeation properties were investigated by means of scanning electron microscopy (SEM) and single gas permeation system. Experimental results indicate that the transport mechanism of small gas molecules of N2, CO2, and CH4 is dominated by the molecular sieving effect. Based on morphological structure and gas permeation properties, an optimum stabilization condition for the preparation of CHFM derived from PEI/PVP was found at 300°C under air atmosphere. The selectivity of about 55 and 41 for CO2/CH4 and CO2/N2, respectively, were obtained.

References

P. Pandey, R. S. Chauhan. 2001. Membrane for gas separation. Prog. Polym. Sci. 26: 853-893.

V. C. Geiszler. 1997. Polyimde precursor for carbon molecular sieve membranes. The University of Texas. PhD Thesis.

P. S. Tin, T. S. Chung, A. J. Hill. 2004. Advanced fabrication of carbon

molecular sieve membranes by nonsolvent pretreatment of precursor polymers. Ind. Eng. Chem. Res. 43: 6476-6483.

C. J. Anderson, S. J. Pas, G. Arora, S. E. Kentish, A. J. Hill, S. I. Sandler, G. W. Stevens. 2008. Effect of pyrolysis temperature and operating temperature on the performance of nanoporous carbon

membranes. J. Membr. Sci. 322: 19-27.

E. B. Coutinho, V. M. M. Salim, C. P. Borges. 2003. Preparation of carbon hollow fiber membranes by pyrolysis of polyetherimide.

Carbon 41: 1707-1714.

H. J. Lee, H. Suda, K. Haraya, S. H. Moon. 2007. Gas permeation properties of carbon molecular sieving membranes derived from the polymer blend of polyphenylene oxide (PPO)/polyvinylpyrrolidone (PVP).

J. Membr. Sci. 296: 139-146.

T. Wang, B. Zhang, J. Qiu, Y. Wu, S. Zhang, Y. Cao. 2009. Effects of sulfone/ketone in poly(phthalazinone ether sulfone ketone) on the gas permeation of their derived carbon membranes. J. Membr Sci. 330:

-325.

A. Bos, I. G. M. Punt, M. Wessling, H. Strathmann. 1998 Plasticization-resistant glassy polyimide membranes for CO2/CO4 separations. Sep. Purif. Tech. 14: 27-39.

J. Drbohlav, W. T. K. Stevenson. 1995. The oxidative stabilization and carbonization of a synthetic mesophase pitch, Part I: The oxidative stabilization process. Carbon. 33 (5): 693-711.

W. N. W. Salleh, A. F. Ismail. 2011. Carbon hollow fiber membranes derived from PEI/ PVP for gas separation. Sep. Purif. Tech. 80:

-548.

W.N.W. Salleh, A.F. Ismail. 2012. Effects of carbonization heating rate on CO2 separation of derived carbon membranes. Sep. Purif. Tech. 88: 174-183.

W. N. W. Salleh, A. F. Ismail, Fabrication and characterization of PEI/PVP-based carbon hollow fiber membranes for CO2/CH4 and

CO2/N2 separation. AIChE J. Article in press.

W.N.W. Salleh, A.F. Ismail. Effect of stabilization temperature on gas permeation properties of carbon hollow fiber membrane, J. Appl. Polym. Sci. Article in press.

V. M. Linkov, R. D. Sanderson, E. P. Jacobs. 1994. Carbon Membranes from Precursors Containing Low-Carbon Residual Polymers.

Polym. Int. 35: 239-242.

M. G. Sedigh, L. Xu, T. T. Tsotsis, M. Sahimi. 1999. Transport and morphological characteristics of polyetherimide-based

carbon molecular sieve membranes. Ind. Eng. Chem. Res. 38: 3367-3380.

P. S. Rao, M. Y. Wey, H. H. Tseng, I. A. Kumar, T. H. Weng. 2008. A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microp. Mesop. Mat. 113: 499-510.

S. Xu, J. Li, G. Qiao, H. Wang, T. Lu. 2009. Pore structure control of mesoporous carbon monoliths derived from mixtures of phenolic resin and ethylene glycol. Carbon. 47: 2103-2111.

A. B. Fuertes, Effect of air oxidation on gas separation properties of adsorptionselective carbon membranes. 2001. Carbon. 39: 697-706.

P. J. Williams. 2006. Analysis of factors influencing the performance of cms membranes for gas separation. Georgia Institute Of Technology. PhD Thesis.

B. Zhang, T. Wang, Y. Wu, Q. Liu, S. Liu, S. Zhang, J. Qiu. 2008. Preparation and gas permeation of composite carbon membranes from poly (phthalazinone ether sulfone ketone). Sep. Purif. Tech. 60: 259-

K. Kusakabe, M. Yamamoto, S. Morooka. 1998. Gas permeation and micropore structure of carbon molecular sieving membranes modified by oxidation. J. Membr. Sci. 149: 59-67.

Downloads

Published

2017-11-13

How to Cite

Salleh, W. N. W., Ismail, A. F., & Rahman, M. A. (2017). Effect of Stabilization Conditions on the Fabrication of Carbon Membranes for CO2 Separation. Journal of Applied Membrane Science &Amp; Technology, 16(1). https://doi.org/10.11113/amst.v16i1.6

Issue

Section

Articles