Influence of Solvent Exchange Drying Method on Mixed Matrix Membrane for Gas Separation


  • A. L. Ahmad School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, S.P.S. Penang, Malaysia
  • Z. A. Jawad Nanotechnology and Advanced Materials Research Center, The University of Technology, 10066 Baghdad, Iraq
  • S. C. Low School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, S.P.S. Penang, Malaysia
  • S. H. S. Zein School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, S.P.S. Penang, Malaysia



The improvement of the CO2 separation efficiency from flue gases has been identified as a high-priority research area, to reduce the total energy cost of sequestration technologies in coal-fired power plant. Among the separation
techniques, membrane technology, in particular mixed matrix membrane (MMM) appeared as the most attractive module due to its high separation capabilities (inorganic fillers) and economical processing materials (polymeric membrane). In this study, MMM was synthesized from cellulose acetate polymer with functionalized multi walled carbon nanotubes served as the inorganic fillers by wet phase inversion. Both vacuum drying and ethanol-hexane exchange drying methods were compared to investigate their influence on the MMM morphologies and properties. Experimental findings (FESEM, AFM and ATR-FTIR) showed that the ethanol–hexane exchange drying was an appropriate method to minimize morphology change of MMM, whereas the vacuum drying caused the greatest
shrinkage to MMM structure. The CO2 permeance results supported the proposed solvent exchange mechanism where MMM with solvent exchange drying showed to have improved in their mechanical strength and better
permeance of (733.90-741.67) GPU compared to the vacuum drying (18.72-18.44) GPU within pressure range of 1 to 3 bars.


Rodriguez, D. M. P. 2010. Aminosilanefunctionalized cellulosic polymers for increased carbon dioxide sorption. In:

Chemical Engineering. Georgia Institue of Technology. 199.

Kailash, C. K., C. Y. Feng, Takeshi Matsuura. 2007. Synthetic polymeric membranes characterization by atomic force microscopy. Springer: Ottawa. 197.

Jie, X., Y. Cao, J.-J. Qin, J. Liu, and Q. Yuan. 2005. Influence of drying method on morphology and properties of asymmetric cellulose hollow fiber membrane. J. Membr. Sci. 246: 157-165.

Riley, R., J. O. Gardner, and U. Merten. 1964. Cellulose acetate membranes: Electron microscopy of structure. Science 143: 801-803.

Gantzel, P. K., and U. Merten. 1970. Gas separations with high-flux cellulose acetate membranes. Industrial & Engineering Chemistry Process Design and Development 9: 331-332.

Lui, A., F. D. F. Talbot, A. Fouda, T. Matsuura, and S. Sourirajan. 1988. Studies on the solvent exchange technique for making dry cellulose acetate membranes for the separation of gaseous mixtures.

J. Appl. Polym. Sci. 36: 1809-1820.

Kumbharkar, S. C., Y. Liu, and K. Li. 2011. High performance polybenzimidazole based asymmetric hollow fibre membranes

for h2/co2 separation. J. Membr. Sci. 375: 231-240.

Goh, P., A. Ismail, S. Sanip, B. Ng, and M. Aziz. 2011. Recent advances of inorganic fillers in mixed matrix membrane for gas

separation. Sep. Purif. Technol. 81: 243- 264.

Mahajan, R., R. Burns, M. Schaeffer, and W. J. Koros. 2002. Challenges in forming successful mixed matrix membranes with

rigid polymeric materials. J. Appl. Polym. Sci. 86: 881-890.

Ismail, A. F., P. S. Goh, S. M. Sanip, and M. Aziz. 2009. Transport and separation properties of carbon nanotube-mixed

matrix membrane. Sep. Purif. Technol. 70: 12-26.

Itta, A. K., H.-H. Tseng, and M.-Y. Wey. 2010. Effect of dry/wet-phase inversion method on fabricating polyetherimide-derived

cms membrane for h2/n2 separation. Int. J. Hydrog. Energy 35: 1650-1658.

Aroon, M. A., A. F. Ismail, M. M. Montazer-Rahmati, and T. Matsuura. 2010. Effect of chitosan as a functionalization agent on the

performance and separation properties of polyimide/multi-walled carbon nanotubes mixed matrix flat sheet membranes. J. Membr. Sci. 364: 309-317.

Moore, T. T., T. Vo, R. Mahajan, S. Kulkarni, D. Hasse, and W. J. Koros. 2003. Effect of humidified feeds on oxygen permeability of

mixed matrix membranes. J. Appl. Polym. Sci. 90: 1574-1580.

Jain, A. K., N. K. Acharya, V. Kulshreshtha, K. Awasthi, M. Singh, and Y. K. Vijay. 2008. Study of hydrogen transport through porous aluminum and composite membranes. Int. J. Hydrog. Energy 33: 346-349.

Chou, W. L., D. G. Yu, and M. C. Yang. 2005. The preparation and characterization of silver-loading cellulose acetate hollow fiber

membrane for water treatment. Polymers for Advanced Technologies 16: 600-607.

Chen, J., M. J. Dyer, and M.-F. Yu. 2001. Cyclodextrin-mediated soft cutting of single-walled carbon nanotubes. J. Am. Chem. Soc. 123: 6201-6202.

Jiang, L., T. Chung, and S. Kulprathipanja. 2006. An investigation to revitalize the separation performance of hollow fibers with a thin mixed matrix composite skin for gas separation. J. Membr. Sci. 276: 113-125.

Zhang, X.-R., L.-Z. Zhang, H.-M. Liu, and L.-X. Pei. 2011. One-step fabrication and analysis of an asymmetric cellulose acetate

membrane for heat and moisture recovery. J. Membr. Sci. 366: 158-165.

Van’t Hof, J., A. Reuvers, R. Boom, H. Rolevink, and C. Smolders. 1992. Preparation of asymmetric gas separation membranes with high selectivity by a dualbath coagulation method. J. Membr. Sci. 70:


Burke, J. 1984. Soulibility parameters: Theory and applications. In: The American Insitute of Conservation.

Romero, R. B., C. A. P. Leite, and M. d. C. Gonçalves. 2009. The effect of the solvent on the morphology of cellulose acetate/

montmorillonite nanocomposites. Polymer 50: 161-170.

Sanip, S. M., A. F. Ismail, P. S. Goh, T. Soga, M. Tanemura, and H. Yasuhiko. 2011. Gas separation properties of functionalized

carbon nanotubes mixed matrix membranes. Sep. Purif. Technol. 78: 208-213.

Minhas, B. S., T. Matsuura, and S. Sourirajan. 1987. Formation of asymmetric cellulose acetate membranes for the separation of carbon dioxide-methane gas mixtures. Ind. Eng. Chem. Res. 26: 2344-

Rahman, S. A. 2004. Development of defect-free and hyperthin-skinned of asymmetric cellulose acetate membrane

from binary dope system for gas separation. in: Faculty of Chemical and Natural Resources Engineering. Universiti Technologi Malaysia. 141




How to Cite

Ahmad, A. L., Jawad, Z. A., Low, S. C., & Zein, S. H. S. (2017). Influence of Solvent Exchange Drying Method on Mixed Matrix Membrane for Gas Separation. Journal of Applied Membrane Science & Technology, 16(1).