Copra Biochar Pyrolysis Optimization for Cr(VI) Removal and Membrane Incorporation Potential

Authors

  • A. A. A. A. Ramli Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • H. Hasbullah Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • J. Hamdan Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • M. N. F. M. Ghazali Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • A. N. Masri Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • T. D. Kusworo Department of Chemical Engineering, Faculty of Engineering, Diponegoro University, Semarang 50275, Indonesia

DOI:

https://doi.org/10.11113/jamst.v29n1.312

Keywords:

Biochar, hexavalent chromium, adsorption, pyrolysis, biomass

Abstract

Pyrolyzed coconut copra biochar (PCB) is a primary byproduct produced during the pyrolysis process of coconut copra biomass. This study focused on the effect of increasing pyrolysis temperature on the characteristics and hexavalent chromium (Cr(VI)) removal potential of the PCB as adsorbent and membrane precursor. Copra, a readily available agricultural waste in Malaysia, was utilized as the biochar precursor to produce PCB at 300-500 °C, 5 °C/min heating rate and 1 hour residence time. Then, PCB was incorporated into a polyvinylidene fluoride (PVDF) membrane using the dry/wet phase inversion technique, with varied biochar loadings (0 to 1 wt.%). The produced PCB were characterized using CHNS elemental analysis, Fourier transform Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), Brunaue-Emmett-Teller (BET) surface analysis and pH drift analysis to assess morphology, functional groups, surface area, porosity and pH point of zero charge, respectively. Adsorption isotherm study shows the best fit with Langmuir and Freundlich model. Adsorption kinetics study shows pseudo-second order model fit better than the pseudo-first-order model. Then, preliminary incorporation tests of optimized PCB in PVDF membrane analyzed using water uptake and porosity analysis, water contact angle and performance analysis via cross flow system to assess water flux and Cr(VI) removal. It was found at 450 °C pyrolysis temperature produced copra biochar with relatively high carbon content of 72 %, the highest pore volume of 6.168 10-3 cm3/g with adsorption capacity of 10.41 mg/g and Cr(VI) removal of 27.98 %. As PCB loading in the PVDF membranes increased from 0 to 0.4 wt.%, it was found that the membrane porosity increased from 7 % to 62 % resulted in the enhancement of the water flux achieving maximum 2.04 Lm-2h-1 at 0.5 g/L loading and Cr(VI) removal achieving 33.33 %. This has shown good potential of copra biochar as adsorbent and incorporation to develop adsorptive membrane for heavy metal removal.

References

Khandgave, S. S., Sreedhar, I. (2023). A mini review on engineered biochars as emerging adsorbents in heavy metal removal. Mater Today Proc., 19–26.

World Health Organization. (2022). Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. World Health Organization, 1–614.

Mitra, S., Chakraborty, A. J., Tareq, A. M., Emran, T. Bin, Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A., Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J King Saud Univ Sci., 34(3), 101865.

Monga, A., Fulke, A. B., Dasgupta, D. (2022). Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies. Journal of Hazardous Materials Advances, 7, 100113.

Chen, F., Guo, S., Wang, Y., Ma, L., Li, B., Song, Z., Huang, L., Zhang, W. (2022). Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge. Front Environ Sci Eng. Doi: 10.1007/s11783-021-1491-6.

Fourth edition incorporating the first and second addenda Guidelines for drinking-water quality.

Oladimeji, T. E., Oyedemi, M., Emetere, M. E., Agboola, O., Adeoye, J. B., Odunlami, O. A. (2024). Review on the impact of heavy metals from industrial wastewater effluent and removal technologies. Heliyon, 10(23), e40370.

Liang, L., Xi, F., Tan, W., Meng, X., Hu, B., Wang, X. (2021). Review of organic and inorganic pollutants removal by biochar and biochar-based composites. Biochar., 3(3), 255–281.

Sajjadi, B., Zubatiuk, T., Leszczynska, D., Leszczynski, J., Chen, W. Y. (2019). Chemical activation of biochar for energy and environmental applications: A comprehensive review. Reviews in Chemical Engineering, 35(7), 777–815.

Kumar Mishra, R., Singh, B., Acharya, B. (2024). A comprehensive review on activated carbon from pyrolysis of lignocellulosic biomass: An application for energy and the environment. Carbon Resources Conversion, 7(4), 100228.

Noor, N. M., Shariff, A., Abdullah, N., Syairah, N., Aziz, M. (2019). Temperature effect on biochar properties from slow pyrolysis of coconut flesh waste. Malaysian Journal of Fundamental and Applied Sciences, 15(2), 153–158.

Mohd H., Zakaria, M., Zaffrie, M., Amin, M., Faireal, A., Syafiq, M., Dani, A., Zakaria, M. H., Zaffrie, M., Amin, M., Ahmad, M. F. (2022). Market potential and competitiveness assessment of Malaysian coconut-based products. Econ Technol. Management Rev., 18, 11–22.

Wang, X., Zhao, Y., Tian, E., Li, J., Ren, Y. (2018). Graphene oxide-based polymeric membranes for water treatment. Adv Mater Interfaces, 5(15), 1701427.

Infurna, G., Caruso, G., Dintcheva, N. T. (2023). Sustainable materials containing biochar particles: A review. Polymers. 15(2), 343.

Lan, Y., Yan, N., Wang, W. (2018). Optimization of the PDMS/biochar nanocomposite membranes using the response surface methodology. IEEE Journal of Selected Topics in Quantum Electronics, 25(5), 947–956.

Wang, K., Ye, Q., Shen, Y., Wang, Y., Hong, Q., Zhang, C., Liu, M., Wang, H. (2023). Biochar addition in membrane bioreactor enables membrane fouling alleviation and nitrogen removal improvement for low C/N municipal wastewater treatment. Membranes (Basel), 13(2), 194.

Davenport, D. M., Gui, M., Ormsbee, L. R., Bhattacharyya, D. (2016). Development of PVDF membrane nanocomposites via various functionalization approaches for environmental applications. Polymers, 8(2), 32.

Kim, K., Young Ko, S., Park, J-O., - al, Alwin, S., Bhat, S. D., Sahu, A. K., Mhlanga, S. D., Tshabalala, T. G., Nxumalo, E. N., Mamba, B. B. (2014). Synthesis of PVDF ultrafiltration membranes supported on polyester fabrics for separation of organic matter from water. IOP Conf Ser Mater Sci Eng., 64(1), 012036.

Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36–46.

Skic, K., Adamczuk, A., Gryta, A., Boguta, P., Tóth, T., Jozefaciuk, G. (2024). Surface areas and adsorption energies of biochars estimated from nitrogen and water vapour adsorption isotherms. Scientific Reports, 14(1), 1–14.

Zhang, X., Zhao, B., Liu, H., Zhao, Y., Li, L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environ Technol Innov., 26, 102288.

Yang, C., Liu, J., Lu, S. (2021). Pyrolysis temperature affects pore characteristics of rice straw and canola stalk biochars and biochar-amended soils. Geoderma. Doi: 10.1016/J.GEODERMA.2021.115097.

Fan, L. Q., Liu, Wan, Y., Wang, Miao, J. X., Cai. J., Chen, W., Chen, F. H., Cheng, L., Ji, L., Luo, H. B. (2019). Hexavalent chromium adsorption removal from aqueous solution by fe-modified biochar derived from rice straw. Appl Ecol Environ Res., 17, 15311–15327. Doi: 10.15666/aeer/1706_1531115327.

Li, J., Jin, P., Tang, C. (2014). Cr(III) adsorption by fluorinated activated boron nitride: A combined experimental and theoretical investigation. RSC Adv., 4(29), 14815–14821.

Rajapaksha, A. U., Alam, M. S., Chen, N., Alessi, D. S., Igalavithana, A. D., Tsang, D. C. W., Ok, Y. S. (2018). Removal of hexavalent chromium in aqueous solutions using biochar: Chemical and spectroscopic investigations. Science of the Total Environment, 625, 1567–1573.

Huo, H., Hu, X., Wang, H., Li, J., Xie, G., Tan, X., Jin, Q., Zhou, D., Li, C., Qiu, G., Liu, Y. (2019). Synergy of photocatalysis and adsorption for simultaneous removal of hexavalent chromium and methylene blue by g-C3N4/BiFeO3/carbon nanotubes ternary composites. International Journal of Environmental Research and Public Health, 16(17), 3219.

Shakya, A., Vithanage, M., Agarwal, T. (2022). Influence of pyrolysis temperature on biochar properties and Cr(VI) adsorption from water with groundnut shell biochars: Mechanistic approach. Environ Res., 215, 114243.

Vo, A. T., Nguyen, V. P., Ouakouak, A., Nieva, A., Doma, B. T., Tran, H. N., Chao, H. P. (2019). Efficient removal of Cr(VI) from water by biochar and activated carbon prepared through hydrothermal carbonization and pyrolysis: adsorption-coupled reduction mechanism. Water, 11(6), 1164.

Yin, W., Guo, Z., Zhao, C., Xu, J. (2019). Removal of Cr(VI) from aqueous media by biochar derived from mixture biomass precursors of Acorus calamus Linn. and feather waste. J Anal Appl Pyrolysis, 140, 86–92.

Li, A., Deng, H., Jiang, Y., Ye, C. (2020). High-efficiency removal of Cr(VI) from wastewater by mg-loaded biochars: adsorption process and removal mechanism. Materials, 13(4), 947.

Xu, M., Wu, J., Luo, L., Yang, G., Zhang, X., Peng, H., Yu, X., Wang, L. (2018). The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications. Chemistry and Ecology, 34(2), 177–197.

Liu, L., Deng, G., Shi, X. (2020). Adsorption characteristics and mechanism of p-nitrophenol by pine sawdust biochar samples produced at different pyrolysis temperatures. Scientific Reports, 10(1), 1–11.

Vo, A. T., Nguyen, V. P., Ouakouak, A., Nieva, A., Doma, B. T., Tran, H. N., Chao, H. P. (2019). Efficient removal of Cr(VI) from water by biochar and activated carbon prepared through hydrothermal carbonization and pyrolysis: adsorption-coupled reduction mechanism. Water, 11(6), 1164.

Xu, M., Wu, J., Luo, L., Yang, G., Zhang, X., Peng, H., Yu, X., Wang, L. (2018). The factors affecting biochar application in restoring heavy metal-polluted soil and its potential applications. Chemistry and Ecology, 34(2), 177–197.

Tang, J. X., Jin, Y. T., He, Z. L., Hou, Q. Y., Zhao, C. T. (2018). A review of researches on biochar adsorbing organic contaminants and its mechanism and influence factors. IOP Conf Ser Mater Sci Eng., 392(5), 052030.

Ezugbe, E. O., Rathilal, S. (2020). Membrane technologies in wastewater treatment: a review. Membranes (Basel), 10(5), 89.

Aziz, S., Mazhar, A. R., Ubaid, A., Shah, S. M. H., Riaz, Y., Talha, T., Jung, D. W. (2024). A comprehensive review of membrane-based water filtration techniques. Appl Water Sci., 14(8), 1–17.

Miao, A., Wei, M., Xu, F., Wang, Y. (2020). Influence of membrane hydrophilicity on water permeability: An experimental study bridging simulations. J Memb Sci., 604, 118087.

Hebbar, R. S., Isloor, A. M., Ismail, A. F. (2017). Contact angle measurements. Membrane Characterization, 219–255.

Liang, M., Ding, Y., Zhang, Q., Wang, D., Li, H., Lu, L. (2020). Removal of aqueous Cr(VI) by magnetic biochar derived from bagasse. Scientific Reports, 10(1), 1–13.

Wang, P., Su, Y., Xie, Y., Zhang, S., Xiong, Y. (2019). Influence of torrefaction on properties of activated carbon obtained from physical activation of pyrolysis char. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(18), 2246–2256.

Janu, R., Mrlik, V., Ribitsch, D., Hofman, J., Sedláček, P., Bielská, L., Soja, G. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. Carbon Resources Conversion, 4, 36–46.

Sahu, N., Shukla, S., Chaudhary, V. K., Kumar, S. (2024). Effective Cr(Vi) removal from aqueous solution by novel biochar based-iron-oxide composites derived from chemical-carbonization of agricultural-waste: performance, kinetics, and mechanisms. Doi: 10.2139/SSRN.4965498.

Ali, A., Alharthi, S., Al-Shaalan, N. H., Naz, A., Fan, H. J. S. (2023). Efficient removal of hexavalent chromium (Cr(VI)) from wastewater using amide-modified biochar. Molecules, 28(13), 5146.

Yang, W., Lei, G., Quan, S., Zhang, L., Wang, B., Hu, H., Li, L., Ma, H., Yin, C., Feng. F., Jing, Y. (2022). The removal of Cr(VI) from aqueous solutions with corn stalk biochar. Int J Environ Res Public Health, 19(21), 14188.

Mohadi, R., Palapa, N. R., Taher, T., Siregar, P. M. S. B. N., Normah, Juleanti, N., Wijaya, A., Lesbani, A. (2021). Removal of Cr(VI) from aqueous solution by biochar derived from rice husk. Communications in Science and Technology, 6(1), 11–17.

Ghorbani-Khosrowshahi, S., Behnajady, M. A. (2016). Chromium(VI) adsorption from aqueous solution by prepared biochar from Onopordom Heteracanthom. International Journal of Environmental Science and Technology, 13(7), 1803–1814.

Khan, A. A., Naqvi, S. R., Ali, I., Arshad, M., AlMohamadi, H., Sikandar, U. (2023). Algal-derived biochar as an efficient adsorbent for removal of Cr (VI) in textile industry wastewater: Non-linear isotherm, kinetics and ANN studies. Chemosphere, 316, 137826.

Acharya, C., Mohapatra, R. K., Sasmal, A., Panda, C. R., Thatoi, H. (2024). Effective remediation of Cr(VI) using coconut coir-derived porous biochar: application of kinetics and isotherm approaches. International Journal of Environmental Science and Technology, 21(10), 7249–7268.

Jha, S., Gaur, R., Shahabuddin, S., Ahmad, I., Sridewi, N. (2022). Kinetic and isothermal investigations on the use of low cost coconut fiber-polyaniline composites for the removal of chromium from wastewater. Polymers (Basel), 14(20), 4264.

Lee, T. Z. E., Sim, S. F. (2019). Application of coconut copra as biosorbent for removal of heavy metals. Key Eng Mater., 797, 3–12.

Downloads

Published

2025-03-27

How to Cite

Ramli, A. A. A. A., Hasbullah, H., Hamdan, J., Ghazali, M. N. F. M., Masri, A. N., & Kusworo, T. D. (2025). Copra Biochar Pyrolysis Optimization for Cr(VI) Removal and Membrane Incorporation Potential. Journal of Applied Membrane Science & Technology, 29(1), 111–140. https://doi.org/10.11113/jamst.v29n1.312

Issue

Section

Articles