Refined Assessment of the Impact of Membrane Module Channel Curvature on Pressure Drop
DOI:
https://doi.org/10.11113/jamst.v29n1.310Keywords:
Hydrodynamics, simulation, CFD, pressure drop, curvatureAbstract
Spacers are key components of membrane modules that significantly influence the performance of membrane separation processes and the value of pressure drop. The development of computational fluid dynamics (CFD) methods promoted a significant increase in investigation dedicated to improving spacer designs. However, some issues in this field remain controversial. One of them is the reasonability of the application of flat models during analysis processes in spiral-wound modules. In the current work, the CFD investigation of the influence of channel curvature on pressure drop was carried out using the open-source software package OpenFOAM-v2212. It was found that within the range of radii of curvature from 0.01 m (10 mm) to 0.025 m (25 mm) and lengths from 0.008 m (8 mm) to 0.015 m (15 mm), the discrepancy does not exceed 10%. Thus, the flat model can be considered an acceptable approximation of real conditions in spiral-wound module channels, particularly during the investigation of new spacer designs. However, if the observed effect does not exceed 7–10%, investigations that consider the channel curvature are advisable. The assumption about the existence of a critical value for the channel’s radius of curvature was not confirmed. The influence of the mesh dimensions on the accuracy of simulation results was evaluated.
References
ijthermalsci.2023.108165.
Ansari, A., Galogahi, F. M., Millar, G., Helfer, F., Thiel, D. V., Soukane, S., & Ghaffour, N. (2022). Computational fluid dynamics simulations of solar-assisted, spacer-filled direct contact membrane distillation: Seeking performance improvement. Desalination, 545, 116181. https://doi.org/10.1016/j.desal.2022.116181.
Stockmeier, F., Stüwe, L., Kneppeck, C., Musholt, S., Albert, K., Linkhorst, J., & Wessling, M. (2023). On the interaction of electroconvection at a membrane interface with the bulk flow in a spacer-filled feed channel. Journal of Membrane Science, 678, 121589. https://doi.org/10.1016/j.memsci.2023.121589.
Al-Amshawee, S. K. A., & Yunus, M. Y. B. M. (2023). Impact of membrane spacers on concentration polarization, flow profile, and fouling at ion exchange membranes of electrodialysis desalination: Diagonal net spacer vs. ladder-type configuration. Process Safety and Environmental Protection, 191, 197–213. https://doi.org/10.1016/j.cherd.2023.01.012.
Ali, S. M., Kim, Y., Qamar, A., Naidu, G., Phuntsho, S., Ghaffour, N., Vrouwenvelder, J. S., & Shon, H. K. (2021). Dynamic feed spacer for fouling minimization in forward osmosis process. Desalination, 515, 115198. https://doi.org/10.1016/j.desal.2021.115198.
Goi, Y., Liang, Y., Lau, W., & Weihs, G. F. (2022). Analysis of the effect of advanced FO spacer on the specific energy consumption of hybrid RO desalination system. Journal of Membrane Science, 668, 121247. https://doi.org/10.1016/j.memsci.2022.121247.
Cai, J. J., Hawboldt, K., & Abdi, M. A. (2016). Analysis of the effect of module design on gas absorption in cross flow hollow membrane contactors via computational fluid dynamics (CFD) analysis. Journal of Membrane Science, 520, 415–424. https://doi.org/10.1016/j.memsci.2016.07.054.
Cancilla, N., Gurreri, L., Marotta, G., Ciofalo, M., Cipollina, A., Tamburini, A., & Micale, G. (2022). A porous media CFD model for the simulation of hemodialysis in hollow fiber membrane modules. Journal of Membrane Science, 646, 120219. https://doi.org/10.1016/j.memsci.2021.120219.
Mohan, T. R., Kumar, M., & Rao, L. (2022). Biofouling of hollow fiber ultrafiltration membranes: A novel multiphase CFD – Porous - CES model and experimental study. Journal of Membrane Science, 663, 121034. https://doi.org/10.1016/j.memsci.2022.121034.
Huliienko, S., Korniyenko, Y., & Yasenchuk, V. (2024). Evaluation of the influence of the channel curvature on the flow characteristics in the channel of spiral wound membrane modules using CFDOF. In Lecture Notes on Data Engineering and Communications Technologies (pp. 441–453). https://doi.org/10.1007/978-3-031-71801-4_32.
Haaksman, V. A., Siddiqui, A., Schellenberg, C., Kidwell, J., Vrouwenvelder, J. S., & Picioreanu, C. (2016). Characterization of feed channel spacer performance using geometries obtained by X-ray computed tomography. Journal of Membrane Science, 522, 124–139. https://doi.org/10.1016/j.memsci.2016.09.005.
Horstmeyer, N., Lippert, T., Schön, D., Schlederer, F., Picioreanu, C., Achterhold, K., Pfeiffer, F., & Drewes, J. E. (2018). CT scanning of membrane feed spacers – Impact of spacer model accuracy on hydrodynamic and solute transport modeling in membrane feed channels. Journal of Membrane Science, 564, 133–145. https://doi.org/10.1016/j.memsci.2018.07.006.
Lau, K., Bakar, M. A., Ahmad, A., & Murugesan, T. (2009). Feed spacer mesh angle: 3D modeling, simulation and optimization based on unsteady hydrodynamic in spiral wound membrane channel. Journal of Membrane Science, 343(1–2), 16–33. https://doi.org/10.1016/j.memsci.2009.07.001.
Johannink, M., Masilamani, K., Mhamdi, A., Roller, S., & Marquardt, W. (2015). Predictive pressure drop models for membrane channels with non-woven and woven spacers. Desalination, 376, 41–54. https://doi.org/10.1016/j.desal.2015.07.024.
Taherinejad, M., Moghimi, M., & Derakhshan, S. (2019). Hydrodynamic modeling of the spiral-wound membrane module including the membrane curvature: reverse osmosis case study. Korean Journal of Chemical Engineering, 36(12), 2074–2084. https://doi.org/10.1007/s11814-019-0372-1.
Saliakellis, P., Koutsou, C., & Karabelas, A. (2022). The effect of gap reduction on fluid dynamics and mass transfer in membrane narrow channels filled with novel spacers—A detailed computational study. Membranes, 13(1), 20. https://doi.org/10.3390/membranes13010020.
Huliienko, S., & Leshchenko, O. (2019). Influence of operating pressure on concentration polarization layer resistance in revers osmosis. Ukrainian Food Journal, 8(1), 119–132. https://doi.org/10.24263/2304-974x-2019-8-1-13.
Kaufman, Y., Kasher, R., Lammertink, R. G., & Freger, V. (2012). Microfluidic NF/RO separation: Cell design, performance and application. Journal of Membrane Science, 396, 67–73. https://doi.org/10.1016/j.memsci.2011.12.052.
Al-Sharif, S., Albeirutty, M., Cipollina, A., & Micale, G. (2013). Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code. Desalination, 311, 103–112. https://doi.org/10.1016/j.desal.2012.11.005.
Wang, Y., He, W., & Zhu, H. (2016). Computational fluid dynamics (CFD) based modelling of osmotic energy generation using pressure retarded osmosis (PRO). Desalination, 389, 98–107. https://doi.org/10.1016/j.desal.2016.02.002.
Kang, P. K., Lee, W., Lee, S., & Kim, A. S. (2017). Origin of structural parameter inconsistency in forward osmosis models: A pore-scale CFD study. Desalination, 421, 47–60. https://doi.org/10.1016/j.desal.2017.05.018.
Harandi, H. B., Asadi, A., Fathi, H., & Sui, P. (2021). Combined macroscopic and pore scale modeling of direct contact membrane distillation with micro-porous hydrophobic membranes. Desalination, 514, 115171. https://doi.org/10.1016/j.desal.2021.115171.
Gruber, M., Johnson, C., Tang, C., Jensen, M., Yde, L., & Hélix-Nielsen, C. (2011). Computational fluid dynamics simulations of flow and concentration polarization in forward osmosis membrane systems. Journal of Membrane Science, 379(1–2), 488–495. https://doi.org/10.1016/j.memsci.2011.06.022.
Haddadi, B., Jordan, C., Miltner, M., & Harasek, M. (2018). Membrane modeling using CFD: Combined evaluation of mass transfer and geometrical influences in 1D and 3D. Journal of Membrane Science, 563, 199–209. https://doi.org/10.1016/j.memsci.2018.05.040.
Liu, X., Xiao, C., Deng, H., Zhang, T., & Huang, Y. (2023). An experimental and modeling investigation of the behaviors of solution in fluoropolymers hollow fiber membranes (HFMs). Journal of Membrane Science, 671, 121421. https://doi.org/10.1016/j.memsci.2023.121421.
Geraldes, V., Henriques, P., Afonso, M. D., Alves, A. M., Pires, R. F., Faria, M., Van Der Bruggen, B., & Rodrigues, M. (2024). Designing centrifugal membrane filters with uniform-pressure for UF/NF/RO separations. Journal of Membrane Science, 702, 122752. https://doi.org/10.1016/j.memsci.2024.122752.
Raach, H., Somasundaram, S., & Mitrovic, J. (2010). Optimisation of turbulence wire spacing in falling films performed with OpenFOAM. Desalination, 267(1), 118–119. https://doi.org/10.1016/j.desal.2010.09.012.
Panda, S. K., Singh, K., Shenoy, K., & Buwa, V. V. (2016). Numerical simulations of liquid-liquid flow in a continuous gravity settler using OpenFOAM and experimental verification. Chemical Engineering Journal, 310, 120–133. https://doi.org/10.1016/j.cej.2016.10.102.
Bhusare, V., Dhiman, M., Kalaga, D., Roy, S., & Joshi, J. (2017). CFD simulations of a bubble column with and without internals by using OpenFOAM. Chemical Engineering Journal, 317, 157–174. https://doi.org/10.1016/j.cej.2017.01.128.
Marcato, A., Boccardo, G., & Marchisio, D. (2021). A computational workflow to study particle transport and filtration in porous media: Coupling CFD and deep learning. Chemical Engineering Journal, 417, 128936. https://doi.org/10.1016/j.cej.2021.128936.
Liang, Y., Dudchenko, A. V., & Mauter, M. S. (2022). Inadequacy of current approaches for characterizing membrane transport properties at high salinities. Journal of Membrane Science, 668, 121246. https://doi.org/10.1016/j.memsci.2022.121246.
Qiao, Z., Guo, Y., Wang, Z., & Hu, G. (2022). A chemically enhanced backwash model for predicting the instantaneous transmembrane pressure of flat sheet membranes in constant flow rate mode. Journal of Membrane Science, 666, 121137. https://doi.org/10.1016/j.memsci.2022.121137.
Barbian, K. P., Hirschwald, L. T., Linkhorst, J., Neidlin, M., Steinseifer, U., Wessling, M., Wiegmann, B., & Jansen, S. V. (2023). Flow and mass transfer prediction in anisotropic TPMS-structures as extracorporeal oxygenator membranes using reduced order modeling. Journal of Membrane Science, 690, 122160. https://doi.org/10.1016/j.memsci.2023.122160.
Sujanani, R., Reimund, K. K., Gleason, K. L., & Freeman, B. D. (2024). Hydraulic permeation-induced water concentration gradients in ion exchange membranes. Journal of Membrane Science, 705, 122858. https://doi.org/10.1016/j.memsci.2024.122858.
Giglia, S., Rautio, K., Kazan, G., Backes, K., Blanchard, M., & Caulmare, J. (2010). Improving the accuracy of scaling from discs to cartridges for dead end microfiltration of biological fluids. Journal of Membrane Science, 365(1–2), 347–355. https://doi.org/10.1016/j.memsci.2010.09.032.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.