Reuse of End-of-life Seawater Reverse Osmosis (RO) Membranes for Water Treatment

Authors

  • Noor Al-Hamimi ᵃNanotechnology Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, Muscat 123, Oman ᵇDepartment of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, Muscat 123, Oman
  • Htet Htet Kyaw Nanotechnology Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, Muscat 123, Oman
  • Buthayna Al-Ghafri Nanotechnology Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, Muscat 123, Oman
  • Sulaiman Al-Obaidani Department of Mechanical and Industrial Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoudh P.C. 123, Oman
  • Jauad El Kharraz Regional Center for Renewable Energy and Energy Efficiency (RCREEE), Egypt
  • Khaled Al-Anezi Chemical Engineering Technology Department, College of Technological Studies (CTS), Kuwait City, Kuwait
  • Mohammed Al-Abri ᵃNanotechnology Research Center, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, Muscat 123, Oman ᵇDepartment of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoudh, Muscat 123, Oman

DOI:

https://doi.org/10.11113/jamst.v28n3.306

Keywords:

Reverse osmosis, end-of-life membranes, desalination, brackish water, environmental impact, reuse

Abstract

Due to the continuing growth in RO desalination plants and the finite lifespan of the RO membranes, large stocks of the end-of-life (EoL) RO membranes are discarded to landfills. This has become a critical challenge in the RO desalination industry. The overall objective of this study was to validate the possibility of direct reuse of the end-of-life seawater reverse osmosis membranes (EoL SWRO) for brackish water desalination in order to limit the environmental impact of their disposal. This study investigates the membrane performance and characterization of four SWRO modules (EoL-M1, EoL-M2, EoL-M3, and EoL-M4). The hydraulic performance of the old membranes was assessed using 5,000 ppm synthetic (NaCl) brackish water and real brackish water, and was compared with the performance of two commercial membranes, namely brackish water RO membrane (BW30) and nanofiltration membrane (NF90). 84-92% NaCl rejection was achieved by direct reuse of EoL membranes, which was higher than the rejection characteristics obtained using commercial BW30 and NF90 membranes. Removal of common salts represent in natural water sources (Na2SO4, Mg2SO4 and MgCl2) and humic substances was also investigated using EoL membranes. The rejection of Na2SO4, MgSO4 and MgCl2 salt solutions was in the range of (50.0-85.8%) with a highest rejection value was obtained for Na2SO4 and the lowest rejection was observed for MgCl2 solution, while a complete rejection was achieved for humic acid. Salt rejection of real brackish water filtration by the EoL membranes (75-77%) presented NF-like properties (Salt rejection was obtained for NF90 membrane was 77%). Therefore, the potential of reusing EoL SWRO is promising and thus benefit the desalination industry and the environment in Oman.

References

M. M. Schenkeveld, R. Morris, B. Budding, J. Helmer, S. Innanen. (2004). Seawater and Brackish water desalination in the Middle East, North Africa and Central Asia: A review of key issues and experiences in six countries, Relatório técnico, Banco Mundial, Nimes, França.

R. García-Pacheco, J. Landaburu-Aguirre, P. Terrero-Rodríguez, E. Campos, F. Molina-Serrano, J. Rabadán, D. Zarzo, E. García-Calvo. (2018). Validation of recycled membranes for treating brackish water at pilot scale. Desalination, 433, 199–208.

H. Dach. (2008). Comparison of nanofiltration and reverse osmosis processes for a selective desalination of brackish water feeds.

G.-d. Kang, Y.-m. Cao. (2012). Development of antifouling reverse osmosis membranes for water treatment: A review. Water research, 46, 584–600.

S. S. Shenvi, A. M. Isloor, A. Ismail. (2015). A review on RO membrane technology: developments and challenges. Desalination, 368, 10–26.

S. F. Anis, R. Hashaikeh, N. Hilal. (2019). Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination, 452, 159–195.

A. E. Anqi, N. Alkhamis, A. Oztekin. (2015). Numerical simulation of brackish water desalination by a reverse osmosis membrane. Desalination, 369, 156–164.

W. Lawler, Z. Bradford-Hartke, M. J. Cran, M. Duke, G. Leslie, B. P. Ladewig, P. Le-Clech. (2012). Towards new opportunities for reuse, recycling and disposal of used reverse osmosis membranes. Desalination, 299, 103–112.

S. Molina, J. Landaburu-Aguirre, L. Rodríguez-Sáez, R. García-Pacheco, G. José, E. García-Calvo. (2018). Effect of sodium hypochlorite exposure on polysulfone recycled UF membranes and their surface characterization. Polymer Degradation and Stability, 150, 46–56.

W. Lawler, A. Antony, M. Cran, M. Duke, G. Leslie, P. Le-Clech. (2013). Production and characterisation of UF membranes by chemical conversion of used RO membranes. Journal of Membrane Science, 447, 203–211.

W. Lawler. (2015). Assessment of end-of-life opportunities for reverse osmosis membranes. School of Chemical Engineering and Faculty of Engineering.

J. M. Veza, J. J. Rodriguez-Gonzalez. (2003). Second use for old reverse osmosis membranes: wastewater treatment. Desalination, 157, 65–72.

J. J. Rodriguez, V. Jiménez, O. Trujillo, J. Veza. (2002). Reuse of reverse osmosis membranes in advanced wastewater treatment. Desalination, 150, 219–225.

W. Lawler, J. Alvarez-Gaitan, G. Leslie, P. Le-Clech. (2015). Comparative life cycle assessment of end-of-life options for reverse osmosis membranes, Desalination, 357, 45–54.

F. Mohammadi, M. Sahraei-Ardakani, Y. M. Al-Abdullah, G. T. Heydt. (2019). Coordinated scheduling of power generation and water desalination units. IEEE Transactions on Power Systems.

T. D. Oyoh. (2017). Desalination in water treatment and sustainability.

E. O. Mohamedou, D. P. Suarez, F. Vince, P. Jaouen, M. Pontie. (2010). New lives for old reverse osmosis (RO) membranes. Desalination, 253, 62–70.

C. Prince, M. Cran, P. Le-Clech, K. Uwe-Hoehn, M. Duke. (2011). Reuse and recycling of used desalination membranes. Proceedings of Oz Water'11, Adelaide.

E. Coutinho de Paula, M. C. S. Amaral. (2017). Extending the life-cycle of reverse osmosis membranes: A review. Waste Management & Research, 35, 456–470.

A. Abuhabib, M. Ghasemi, A. W. Mohammad, R. A. Rahman, A. El-Shafie. (2013). Desalination of brackish water using nanofiltration: performance comparison of different membranes. Arabian Journal for Science and Engineering, 38, 2929–2939.

N. Melián-Martel, J. J. Sadhwani, S. Malamis, M. Ochsenkühn-Petropoulou. (2012). Structural and chemical characterization of long-term reverse osmosis membrane fouling in a full scale desalination plant. Desalination, 305, 44–53.

W. Lee, C. H. Ahn, S. Hong, S. Kim, S. Lee, Y. Baek, J. Yoon. (2010). Evaluation of surface properties of reverse osmosis membranes on the initial biofouling stages under no filtration condition, J. Membr. Sci., 351, 112–122.

C. J. Gabelich, K. P. Ishida, F. W. Gerringer, R. Evangelista, M. Kalyan, I. H. M. Suffet. (2006). Control of residual aluminum from conventional treatment to improve reverse osmosis performance. Desalination, 190, 147–160.

K. Singh, S. Devi, H. C. Bajaj, P. Ingole, J. Choudhari, H. Bhrambhatt. (2014). Optical resolution of racemic mixtures of amino acids through nanofiltration membrane process. Sep. Sci. Technol., 49, 2630–2641.

A. U. H. Khan, Z. Khan, I. H. Aljundi. (2017). Improved hydrophilicity and anti-fouling properties of polyamide TFN membrane comprising carbide derived carbon. Desalination, 420, 125–135.

S. Javed, I. H. Aljundi, M. Khaled. (2017). High fouling-resistance of polyamide desalination-membrane modified with PEI/PAH polyelectrolyte multilayers. Journal of Environmental Chemical Engineering, 54594–4604.

M. Liu, D. Wu, S. Yu, C. Gao. (2009). Influence of the polyacyl chloride structure on the reverse osmosis performance, surface properties and chlorine stability of the thin-film composite polyamide membranes. Journal of Membrane Science, 326, 205–214.

A. Zirehpour, A. Rahimpour, A. Arabi Shamsabadi, M. Sharifian Gh, M. Soroush. (2017). Mitigation of thin-film composite membrane biofouling via immobilizing nano-sized biocidal reservoirs in the membrane active layer. Environmental Science & Technology, 51, 5511–5522.

C. Wang, Z. Li, J. Chen, Y. Zhong, L. Ren, Y. Pu, Z. Dong, H. Wu. (2018). Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti-fouling performance of polyamide nanofiltration membranes. Journal of Materials Science, 53, 10499–10512.

E. Thomas, D. Muirhead. (2009). Impact of wastewater fouling on contact angle. Biofouling, 25, 445–454.

R. García-Pacheco, W. Lawler, J. Landaburu, E. García-Calvo, P. Le-Clech. (2017). End-of-life membranes: Challenges and opportunities.

G. Aas, A. Mea, S. Ha, A.-M. Msa. (2017). Effect of different salts on mass transfer coefficient and inorganic fouling of TFC Membranes.

C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J. Pagetti. (2003). Retention of mineral salts by a polyamide nanofiltration membrane. Separation and Purification Technology, 30, 47–55.

Y. Zhou, C. Gao. (2010). Comparison between BWRO membrane and SWRO membrane. CIESC Journal, 10, 2590–2595.

G. Fipps. (2003). Irrigation water quality standards and salinity management strategies. Texas FARMER Collection.

Downloads

Published

2024-12-12

How to Cite

Al-Hamimi, N., Kyaw, H. H., Al-Ghafri, B., Al-Obaidani, S., El Kharraz, J., Al-Anezi, K., & Al-Abri, M. (2024). Reuse of End-of-life Seawater Reverse Osmosis (RO) Membranes for Water Treatment. Journal of Applied Membrane Science & Technology, 28(3), 59–84. https://doi.org/10.11113/jamst.v28n3.306

Issue

Section

Articles