A Mini Review on Advancements in Membrane Technologies for CO2 Separation: The Role of Polyphenylene Sulfide Fillers
DOI:
https://doi.org/10.11113/jamst.v29n1.305Keywords:
Polyphenylene sulfide, biogas separation, membrane technologiesAbstract
Biogas is a renewable energy source mainly made up of methane (CH4) and carbon dioxide (CO2), demands excellent CO2 separation with the goal to reach the minimum of 95% purity for CH4 needed to produce biomethane. Pressure swing adsorption (PSA) and chemical absorption are the example of conventional techniques to remove CO2 that have been commonly used, despite their limitations related to high energy consumption, operational complexity and efficiency. These limitations highlight the need for innovative and sustainable approaches to improve purification of biogas. This study explores the potential of using fillers based on polyphenylene sulfide (PPS) in polymeric membranes as a novel approach to enhance CO2 separation from biogas. PPS makes a great option for membrane applications due to its aromatic polymer that is popularly known for its chemical resistance and thermal stability. Current developments, such as porous carbon-derived materials (PCs) and nitrogen-sulfur co-doped porous carbon (NSPCs), exhibit intriguing features for improving gas separation through their interactions with CO2. The incorporation of PPS-based fillers into polysulfone (PSf) membranes is anticipated to further enhance CO2 separation performance. This analysis highlighted significant advancements in membrane technology by comparing PPS-based systems with conventional techniques to demonstrate their benefits especially in terms of energy efficiency and simplified procedures. In addition, the review highlighted the current recent circumstances associated with material compatibility and scalability, which suggests future research areas. Development in this sector offers potential processes to completely transform the utilization of biogas by providing sustainable and efficient techniques for CO2 separation, which would enhance the production of biomethane.
References
Naquash, A., Qyyum, M. A., Haider, J., Bokhari, A., Lim, H., & Lee, M. (2022). State-of-the-art assessment of cryogenic technologies for biogas upgrading: Energy, economic, and environmental perspectives. Renewable and Sustainable Energy Reviews, 154, 111826.
Kabeyi, M. J. B., & Olanrewaju, O. A. (2022). Biogas production and applications in the sustainable energy transition. Journal of Energy, 2022(1), 8750221.
Figaj, R. (2024). Energy and economic sustainability of a small-scale hybrid renewable energy system powered by biogas, solar energy, and wind. Energies, 17(3), 706.
Czekała, W. (2022). Biogas as a sustainable and renewable energy source. Clean Fuels for Mobility, 201–214.
Onu, C. E., Nweke, C. N., & Nwabanne, J. T. (2022). Modeling of thermo-chemical pretreatment of yam peel substrate for biogas energy production: RSM, ANN, and ANFIS comparative approach. Applied Surface Science Advances, 11, 100299.
Atukunda, Anita, Mona G. Ibrahim, Manabu Fujii, Shinichi Ookawara, and Mahmoud Nasr. (2024) Dual biogas/biochar production from anaerobic co-digestion of petrochemical and domestic wastewater: a techno-economic and sustainable approach. Biomass Conversion and Biorefinery, 14(7), 8793–8803.
Unpaprom, Y., Pimpimol, T., Whangchai, K., & Ramaraj, R. (2021). Sustainability assessment of water hyacinth with swine dung for biogas production, methane enhancement, and biofertilizer. Biomass Conversion and Biorefinery, 11, 849–860.
Liu, Y., Sim, J., Hailemariam, R. H., Lee, J., Rho, H., Park, K. D., & Woo, Y. C. (2022). Status and future trends of hollow fiber biogas separation membrane fabrication and modification techniques. Chemosphere, 303, 134959.
Mithra, S. N., & Ahankari, S. S. (2022). Nanocellulose-based membranes for CO2 separation from biogas through the facilitated transport mechanism: a review. Materials Today Sustainability, 19, 100191.
Hollas, C. E., Bolsan, A. C., Chini, A., Venturin, B., Bonassa, G., Cândido, D., ... & Kunz, A. (2021). Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach. Renewable and Sustainable Energy Reviews, 150, 111472.
Mergenthal, M., Tawai, A., Amornraksa, S., Roddecha, S., & Chuetor, S. (2023). Methane enrichment for biogas purification using pressure swing adsorption techniques. Materials Today: Proceedings, 72, 2915–2920.
Kottititum, B., Srinophakun, T., Phongsai, N., & Phung, Q. T. (2020). Optimization of a six-step pressure swing adsorption process for biogas separation on a commercial scale. Applied Sciences, 10(14), 4692.
Chen, Y. F., Lin, P. W., Chen, W. H., Yen, F. Y., Yang, H. S., & Chou, C. T. (2021). Biogas upgrading by pressure swing adsorption with design of experiments. Processes, 9(8), 1325.
Upadhyay, A., Kovalev, A. A., Zhuravleva, E. A., Kovalev, D. A., Litti, Y. V., Masakapalli, S. K., ... & Vivekanand, V. (2022). Recent development in physical, chemical, biological and hybrid biogas upgradation techniques. Sustainability, 15(1), 476.
Abd, A. A., Othman, M. R., & Helwani, Z. (2022). Unveiling the critical role of biogas compositions on carbon dioxide separation in biogas upgrading using pressure swing adsorption. Biomass Conversion and Biorefinery, 1–14.
Canevesi, R., & Grande, C. A. (2023). Biogas upgrading by pressure swing adsorption using zeolite 4A. Effect of purge on process performance. Separation and Purification Technology, 309, 123015.
Boer, D. G., Langerak, J., Bakker, B., & Pescarmona, P. P. (2022). Binderless zeolite LTA beads with hierarchical porosity for selective CO2 adsorption in biogas upgrading. Microporous and Mesoporous Materials, 344, 112208.
Yusuf, M., Kumar, R., Khan, M. A., Ahmed, M. J., Otero, M., Prabhu, S. M., ... & Jeon, B. H. (2023). Metal-organic framework-based composites for biogas and natural gas uptake: An overview of adsorption and storage mechanisms of gaseous fuels. Chemical Engineering Journal, 147302.
Rogacka, J., Pakuła, P., Mazur, B., Firlej, L., & Kuchta, B. (2024). Advancing biogas purification: A systematic numerical study of MOF performance under humid conditions. Chemical Engineering Journal, 486, 150097.
Surra, E., Ribeiro, R. P., Santos, T., Bernardo, M., Mota, J. P., Lapa, N., & Esteves, I. A. (2022). Evaluation of activated carbons produced from Maize Cob Waste for adsorption-based CO2 separation and biogas upgrading. Journal of Environmental Chemical Engineering, 10(1), 107065.
Rainone, F., D’Agostino, O., Erto, A., Balsamo, M., & Lancia, A. (2021). Biogas upgrading by adsorption onto activated carbon and carbon molecular sieves: Experimental and modelling study in binary CO2/CH4 mixture. Journal of Environmental Chemical Engineering, 9(5), 106256.
del Rosario Rodero, M., Muñoz, R., González-Sánchez, A., Ruiz, H. A., & Quijano, G. (2024). Membrane materials for biogas purification and upgrading: Fundamentals, recent advances and challenges. Journal of Environmental Chemical Engineering, 114106.
Ahmad, M. Z., Peters, T. A., Konnertz, N. M., Visser, T., Téllez, C., Coronas, J., ... & Benes, N. E. (2020). High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Separation and Purification Technology, 230, 115858.
Nobandegani, M. S., Yu, L., & Hedlund, J. (2022). Zeolite membrane process for industrial CO2/CH4 separation. Chemical Engineering Journal, 446, 137223.
Lin, H., & Yavari, M. (2015). Upper bound of polymeric membranes for mixed-gas CO2/CH4 separations. Journal of Membrane Science, 475, 101–109.
Rodenas, T., Van Dalen, M., Serra-Crespo, P., Kapteijn, F., & Gascon, J. (2014). Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous and Mesoporous Materials, 192, 35–42.
Ahmad, M. Z., Peters, T. A., Konnertz, N. M., Visser, T., Téllez, C., Coronas, J., ... & Benes, N. E. (2020). High-pressure CO2/CH4 separation of Zr-MOFs based mixed matrix membranes. Separation and purification technology, 230, 115858.
Rodenas, T., Van Dalen, M., Serra-Crespo, P., Kapteijn, F., & Gascon, J. (2014). Mixed matrix membranes based on NH2-functionalized MIL-type MOFs: Influence of structural and operational parameters on the CO2/CH4 separation performance. Microporous and Mesoporous Materials, 192, 35–42
Wang, X., Li, Z., Zhang, M., Fan, T., & Cheng, B. (2017). Preparation of a polyphenylene sulfide membrane from a ternary polymer/solvent/non-solvent system by thermally induced phase separation. RSC advances, 7(17), 10503–10516.
Fan, T., Miao, J., Li, Z., & Cheng, B. (2019). Bio-inspired robust superhydrophobic-superoleophilic polyphenylene sulfide membrane for efficient oil/water separation under highly acidic or alkaline conditions. Journal of Hazardous Materials, 373, 11–22.
Zhang, M., Gao, Y., Zhang, Y., Zhang, M., Gao, Y., Cheng, B., & Li, Z. (2021). Preparation and properties of polyphenylene sulfide/oxidized-polyphenylene sulfide composite membranes. Reactive and Functional Polymers, 160, 104842.
Liu, Wenlei, Maliang Zhang, Zhenhuan Li, and Meina Liu. (2024). Green preparation and porous structure construction of polyphenylene sulfide hollow fiber membrane via melt-spinning and hot-stretching method. ACS Applied Polymer Materials, 6(3): 1800–1812.
Wang, Shiyu, Zhengong Zhou, Jiazhen Zhang, Guodong Fang, and Yue Wang. (2017). Effect of temperature on bending behavior of woven fabric-reinforced PPS-based composites. Journal of Materials Science, 52, 13966–13976.
Sibiryakov, B., L. W. B. Leite, and E. Sibiriakov. (2021). Porosity, specific surface area and permeability in porous media. Journal of Applied Geophysics, 186, 104261.
Gao, Luyao, Kunmei Su, Tingting Fan, and Zhenhuan Li. (2019). Study on the structure and properties of PPS/PCNF hybrid membranes and their applications in wastewater treatment. Polymer, 176, 274–282.
Junaidi, A., Zulfiani, U., Khomariyah, S., Gunawan, T., Widiastuti, N., Sazali, N., & Salleh, W. N. W. (2024). Utilization of polyphenylene sulfide as an organic additive to enhance gas separation performance in polysulfone membranes. RSC Advances, 14(4), 2311–2319.
Chen, Q., Liu, Y., Deng, H., Lyu, T., Tan, J., Yang, W., ... & Ramakrishna, S. (2020). Melt differential electrospinning of polyphenylene sulfide nanofibers for flue gas filtration. Polymer Engineering & Science, 60(11), 2887–2894.
Bai, J., Huang, J., Jiang, Q., Jiang, W., Demir, M., Kilic, M., ... & Hu, X. (2023). Synthesis and characterization of polyphenylene sulfide resin-derived S-doped porous carbons for efficient CO2 capture. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 674, 131916.
Wang, M., Du, X., Zhang, M., Su, K., & Li, Z. (2022). From S-rich polyphenylene sulfide to honeycomb-like porous carbon with ultrahigh specific surface area as bifunctional electrocatalysts for rechargeable Zn-air batteries. Carbon, 198, 264–274.
Su, W., Tang, W., Zhu, Z., & Liu, Y. (2020, October). Sulfur-doped porous carbon derived from waste polyphenylene sulfide for efficient adsorption removal of Cd2+ from simulated wastewater. Journal of Physics: Conference Series, 1639(1), 012094. IOP Publishing.
Chen, G., Mohanty, A. K., & Misra, M. (2021). Progress in research and applications of Polyphenylene Sulfide blends and composites with carbons. Composites Part B: Engineering, 209, 108553.
Kluge, S., Kose, T., & Tutuş, M. (2022). Tuning the morphology and gas separation properties of polysulfone membranes. Membranes, 12(7), 654.
Farrokhara, M., & Dorosti, F. (2020). New high permeable polysulfone/ionic liquid membrane for gas separation. Chinese Journal of Chemical Engineering, 28(9), 2301¬2311.
Natarajan, P., Sasikumar, B., Elakkiya, S., Arthanareeswaran, G., Ismail, A. F., Youravong, W., & Yuliwati, E. (2021). Pillared cloisite 15A as an enhancement filler in polysulfone mixed matrix membranes for CO2/N2 and O2/N2 gas separation. Journal of Natural Gas Science and Engineering, 86, 103720.
Asif, K., Lock, S. S. M., Taqvi, S. A. A., Jusoh, N., Yiin, C. L., & Chin, B. L. F. (2023). A molecular simulation study on amine-functionalized silica/polysulfone mixed matrix membrane for mixed gas separation. Chemosphere, 311, 136936.
Douna, I., Farrukh, S., Hussain, A., Salahuddin, Z., Noor, T., Pervaiz, E., ... & Fan, X. F. (2022). Experimental investigation of polysulfone modified cellulose acetate membrane for CO2/H2 gas separation. Korean Journal of Chemical Engineering, 39(1), 189–197.
Shang, M., Zhang, J., Liu, X., Liu, Y., Guo, S., Yu, S., ... & Yi, X. (2021). N, S self-doped hollow-sphere porous carbon derived from puffball spores for high performance supercapacitors. Applied Surface Science, 542, 148697.
Huo, X., Zhou, P., Zhang, J., Liu, Y., Cheng, X., Liu, Y., ... & Zhang, Y. (2020). N, S-Doped porous carbons for persulfate activation to remove tetracycline: Nonradical mechanism. Journal of hazardous materials, 391, 122055.
Liu, D., Srinivas, K., Chen, X., Ma, F., Zhang, X., Wang, X., ... & Chen, Y. (2022). Dual Fe, Zn single atoms anchored on carbon nanotubes inlaid N, S-doped hollow carbon polyhedrons for boosting oxygen reduction reaction. Journal of Colloid and Interface Science, 624, 680–690.
Chen, Y., Su, F., Xie, H., Wang, R., Ding, C., Huang, J., ... & Ye, L. (2021). One-step construction of S-scheme heterojunctions of N-doped MoS2 and S-doped g-C3N4 for enhanced photocatalytic hydrogen evolution. Chemical Engineering Journal, 404, 126498.
Li, X., Yang, X., Liu, L., Zhao, H., Li, Y., Zhu, H., ... & Wu, G. (2021). Chemical vapor deposition for N/S-doped single Fe site catalysts for the oxygen reduction in direct methanol fuel cells. Acs Catalysis, 11(12), 7450–7459.
Deokar, G., Jin, J., Schwingenschlögl, U., & Costa, P. M. (2022). Chemical vapor deposition-grown nitrogen-doped graphene’s synthesis, characterization and applications. NPJ 2D Materials and Applications, 6(1), 14
Xiao, J., Wang, Y., Zhang, T. C., & Yuan, S. (2021). N, S-containing polycondensate-derived porous carbon materials for superior CO2 adsorption and supercapacitor. Applied Surface Science, 562, 150128.
Ma, C., Lu, T., Shao, J., Huang, J., Hu, X., & Wang, L. (2022). Biomass derived nitrogen and sulfur co-doped porous carbons for efficient CO2 adsorption. Separation and Purification Technology, 281, 119899.
Ma, C., Bai, J., Demir, M., Hu, X., Liu, S., & Wang, L. (2022). Water chestnut shell-derived N/S-doped porous carbons and their applications in CO2 adsorption and supercapacitor. Fuel, 326, 125119.
Liu, J., Jiang, Y., Zhang, X., Fu, L., & Deng, M. (2022). Performance optimization of an HT-PEMFC and PSA integrated system with impure hydrogen containing CO2. Applied Thermal Engineering, 214, 118859.
Wang, S., Su, Z., & Lu, X. (2020). Energy-consumption analysis of carbon-based material for CO2 capture process. Fluid Phase Equilibria, 510, 112504.
Fang, M., Liu, F., Wang, T., Zhu, D., Dong, W., Xu, Y., & Yi, N. (2022). Chemical absorption. Handbook of Climate Change Mitigation and Adaptation (pp. 1405-1481). Cham: Springer International Publishing.
Baltar, A., Gómez‐Díaz, D., Navaza, J. M., & Rumbo, A. (2020). Absorption and regeneration studies of chemical solvents based on dimethylethanolamine and diethylethanolamine for carbon dioxide capture. AIChE Journal, 66(1), e16770.
Rashed, A. O., Merenda, A., Kondo, T., Lima, M., Razal, J., Kong, L., ... & Dumée, L. F. (2021). Carbon nanotube membranes–strategies and challenges towards scalable manufacturing and practical separation applications. Separation and Purification Technology, 257, 117929.
Castro-Munoz, R., Agrawal, K. V., Lai, Z., & Coronas, J. (2023). Towards large-scale application of nanoporous materials in membranes for separation of energy-relevant gas mixtures. Separation and Purification Technology, 308, 122919.
Zhu, Lingxiang, Liang Huang, Surendar R. Venna, Adrienne K. Blevins, Yifu Ding, David P. Hopkinson, Mark T. Swihart, and Haiqing Lin. (2021). Scalable polymeric few-nanometer organosilica membranes with hydrothermal stability for selective hydrogen separation. ACS Nano, 15(7), 12119–12128.
Al-Shaeli, M., Smith, S. J., Jiang, S., Wang, H., Zhang, K., & Ladewig, B. P. (2021). Long-term stable metal organic framework (MOF) based mixed matrix membranes for ultrafiltration. Journal of Membrane Science, 635, 119339.
He, S., Zhu, B., Li, S., Zhang, Y., Jiang, X., Lau, C. H., & Shao, L. (2022). Recent progress in PIM-1 based membranes for sustainable CO2 separations: Polymer structure manipulation and mixed matrix membrane design. Separation and Purification Technology, 284, 120277.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.