Hollow Fiber Contactors with Improved Hydrophobicity for Acid Gas Removal: Progress and Recent Advances

Authors

  • Anil K. Pabby Ex- Nuclear Recycle Board, BARC, Tarapur, Distt. Palghar, 401502, Maharashtra, India
  • Pallavi Mahajan-Tatpate School of Chemical Engineering, MIT-World Peace University, Pune, Maharashtra, India

DOI:

https://doi.org/10.11113/amst.v28n2.296

Abstract

The gas–liquid membrane contactor technology, which integrates the absorption process with membranes, is a developing membrane technology that is especially pertinent to acid gas absorption. When it comes to removing acid gases from natural gas or after combustion, membrane technology has demonstrated potential as a substitute for conventional absorption columns. The membrane contactor offers exceptional operating flexibility and a high mass transfer area. In addition to summarizing the key elements of membrane materials, absorbents, and membrane contactor design, this paper presents the working principle and wetting mechanism of hollow membrane contactors and focuses the most recent advancements in membrane contactor research in gas separation from gas mixtures. The state-of-the-art overview of highly hydrophobic microporous membranes is presented after a discussion of the main challenges to the preparation of superhydrophobic membranes.

Author Biography

Pallavi Mahajan-Tatpate, School of Chemical Engineering, MIT-World Peace University, Pune, Maharashtra, India

Assistant Professor

References

Pasichnyk, M., P. Stanovsky, P. Polezhaev, B. Zach, M. Syc, M. Bobak, J. C. Jansen, M. Pribyl, J. E. Bara, K. Friess, J. Havlica, D. L. Gin, R. D. Noble, P. Izak. (2023). Membrane technology for challenging separations: Removal of CO2, SO2, and NOx from flue and waste gases. Separation and Purification Technology. 323, 124436.

Goh, P. S., R. Naim, M. Rahbari-Sisakht, A. F. Ismail. (2019). Modification of membrane hydrophobicity in membrane contactors for environmental remediation. Separation and Purification Technology 227, 115721.

Chen, H., Zhiying, Lu, Yangming Cheng, Enrico Drioli, Zhaohui Wang. (2023). Development and emerging application of membrane degassing technology, Feng Zhang, Zhaoliang Cui. Advanced Membranes, 3, 100076.

Imtiaz, A., Mohd Hafiz, Dzarfan Othman, Asim Jilani, Imran Ullah Khan, Roziana Kamaludin, Muhammad Ayub, Ojo Samuel, Tonni Agustiono Kurniawan. (2023). A critical review in recent progress of hollow fiber membrane contactors for efficient CO2 separations. Chemosphere, 35, 138300.

Mansourizadeh, A. and A. F. Ismail. (2009). Hollow fiber gas–liquid membrane contactors for acid gas capture: A review. J. Hazard. Mater., 17, 38-53.

Jana, A., Akshay Modi. (2024). Recent progress on functional polymeric membranes for CO2 separation from flue gases: A review. Carbon Capture Science & Technology, 11, 100204.

Pabby, A. K., S. R. Wickramasinghe, K. K. Sirkar, K. K., A. M. Sastre. (2020). Hollow fiber membrane contactors: Module fabrication, design and operation, and potential applications. CRC Press.

Bazhenov, S. D., A. V. Bildyukevich, A. V. Volkov. (2018). Gas-liquid hollow fiber membrane contactors for different applications. Fibers, 6, 76. https://doi.org/10.3390/fib6040076.

Kreulen, H., C. A. Smolders, G. F. Versteeg, W. P. M. Van, Swaaij. (1993). Microporous hollow fibre membrane modules as gas-liquid contactors. Part 1. Physical mass transfer processes A specific application: mass transfer in highly viscous liquids. J. Memb. Sci., 78, 197-216.

Xue, K., Hongming Fu, Haiping Chen, Heng Zhang, Dan Gao. (2023). Investigation of membrane wetting for CO2 capture by gas–liquid contactor based on ceramic membrane. Separation and Purification Technology, 304, 122309.

Petukhov, D. I., M. A. Komkova, Ar. A. Eliseeva, A. A. Poyarkova, An. A. Eliseev. (2022). Nanoporous polypropylene membrane contactorsfor CO2 and H2S capture using alkali absorbents. Chemical Engineering Research and Design, 177, 448-460.

Qazi, S., L. Gómez-Coma, J. Albo, S. Druon-Bocquet, A. Irabien, J. Sanchez-Marcano. (2020). CO2 capture in a hollow fiber membrane contactor coupled with ionic liquid: Influence of membrane wetting and process parameters. Separation and Purification Technology, 233, 115986.

Drioli, E., E. Curcio and G. di Profio. (2005). State of the art and recent progresses in membrane contactors. Chem. Eng. Res. Des. 83, 223-33.

Eygen, G. V., B. Van der Bruggen, A, Buekenhoudt, P. L. Alconero. (2021). Efficient membrane-based affinity separations for chemical applications: A review. Chemical Engineering & Processing: Process Intensification, 169, 108613.

Pabby A K and A. M. Sastre. (2013). State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. J. Membr. Sci., 430, 263-303.

Pabby, A. K., B. Swain, A. M. Sastre. (2017). Recent advances in smart integrated membrane assisted liquid extraction technology. Chemical Engineering and Processing: Process Intensification. Chem. Eng. Process, 120, 27-56. Doi: 10.1016/j. cep.2017.06.006.

Karoor, S. and K. K. Sirkar. (1993). Gas absorption studies in microporous hollow fiber membrane modules. Ind. Eng. Chem. Res., 32, 674-84.

Lu, J-G., Y-F. Zheng and M-D, Cheng. (2008). Wetting mechanism in mass transfer process of hydrophobic membrane gas absorption. J. Membr. Sci., 308, 180-90.

Rivas, O. R. and J. M. Prausnitz. (1979). Sweetening of sour natural gases by mixed‐solvent absorption: solubilities of ethane, carbon dioxide, and hydrogen sulfide in mixtures of physical and chemical solvents. AlChE J., 25, 975-84.

deMontigny D, P. Tontiwachwuthikul and A. Chakma. (2006). Using polypropylene and polytetrafluoroethylene membranes in a membrane contactor for CO2 absorption. J. Membr. Sci., 277, 99-107.

Kim, Y-S. and S-M. Yang. (2000). Absorption of carbon dioxide through hollow fiber membranes using various aqueous absorbents, Sep. Purif. Technol., 21, 101-9.

Resnik, K. P., J. T. Yeh and H. W. Pennline. (2004). Aqua ammonia process for simultaneous removal of CO2, SO2 and NOx. Int. J. Environ. Technol. Manage., 4, 89-104.

Jeon, H., H. Ahn, S. Inho, H-K, Jeong, L. Yongtaek and L. Hyung-Keun. (2008). Absorption of sulfur dioxide by porous hydrophobic membrane contactor. Desalination, 234, 252-60.

Zhang, Y. and R. Wang. (2013). Gas–liquid membrane contactors for acid gas removal: recent advances and future challenges. Curr. Opin. Chem. Eng., 2, 255-62.

Dindore, V. Y., D. W. F. Brilman, F. H. Geuzebroek and G. F. Versteeg. (2004). Membrane–solvent selection for CO2 removal using membrane gas–liquid contactors. Sep. Purif. Technol., 40, 133-45.

Lv, Y., X. Yu, S-T. Tu, J. Yan and E. Dahlquist. (2010). Wetting of polypropylene hollow fiber membrane contactors. J. Membr. Sci., 362, 444-52.

Nishikawa, N., M. Ishibashi, H. Ohta, N. Akutsu, H. Matsumoto, T. Kamata and H. Kitamura. 1995. CO2 removal by hollow-fiber gas-liquid contactor, Energy Convers. Manage., 36, 415-8.

Khaisri S, D. deMontigny, P Tontiwachwuthikul and R. Jiraratananon. (2009). Comparing membrane resistance and absorption performance of three different membranes in a gas absorption membrane contactor. Sep. Purif. Technol., 65, 290-7.

Franco, J. A., S. E., Kentish, J. M. Perera and G. W. Stevens. (2008). Fabrication of a superhydrophobic polypropylene membrane by deposition of a porous crystalline polypropylene coating. J. Membr. Sci., 318, 107-13.

Zhang, H-Y., R. Wang, D. T. Liang and J. H. Tay. (2008). Theoretical and experimental studies of membrane wetting in the membrane gas–liquid contacting process for CO2 absorption, J. Membr. Sci., 308, 162-70.

Chabanon, E., D. Roizard and E. Favre. (2011). Membrane contactors for postcombustion carbon dioxide capture: a comparative study of wetting resistance on long time scales. Ind. Eng. Chem. Res., 50, 8237-44.

Barbe, A. M., P. A. Hogan and R. A. Johnson. (2000). Surface morphology changes during initial usage of hydrophobic, microporous polypropylene membranes, J. Membr. Sci., 172, 149-56.

Rangwala, H. A. (1996). Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J. Membr. Sci., 112, 229-40.

Lv, Y., X. Yu, S-T. Tu, J. Yan and E. Dahlquist. (2012). Experimental studies on simultaneous removal of CO2 and SO2 in a polypropylene hollow fiber membrane contactor. Appl. Energy, 97, 283-8.

Kim, B-S. and P. Harriott. (1987). Critical entry pressure for liquids in hydrophobic membranes. J. Colloid Interface Sci., 115, 1-8.

Celia, E., T. Darmanin, E. Taffin de Givenchy, S. Amigoni and F. Guittard. (2013). Recent advances in designing superhydrophobic surfaces. J. Colloid Interface Sci., 402, 1-18.

Koonaphapdeelert, S., Z. Wu, K. Li. (2009). Carbon dioxide stripping in ceramic hollow fibre membrane contactors. Chem. Eng. Sci., 64, 1-8.

An, L., X. Yu, J. Yang, S-T. Tu and J. Yan. (2015). CO2 Capture using a superhydrophobic ceramic membrane contactor. Energy Procedia, 75, 2287-92.

Yu, X., L. An, J. Yang, S-T. Tu and J. Yan. (2015). CO2 capture using a superhydrophobic ceramic membrane contactor. J. Membr. Sci., 496, 1-12.

Picard, C., A. Larbot, F. Guida-Pietrasanta, B. Boutevin and A. Ratsimihety. (2001). Grafting of ceramic membranes by fluorinated silanes: hydrophobic features. Sep. Purif. Technol., 25, 65-9.

Wongchitphimon, S., R. Wang, R. Jiraratananon. (2011). Surface modification of polyvinylidene fluoride-cohexafluoropropylene (PVDF-HFP) hollow fiber membrane for membrane gas absorption. J Membr Sci., 381, 183-191.

Nguyen, P. T., E. Lasseuguette, Y. Medina-Gonzalez, J. C. Remigy, D. Roizard, E. Favre. (2011). A dense membrane contactor for intensified CO2 gas/liquid absorption in post-combustion capture. J Membr Sci., 377, 261-272.

Himma, N. F., S. Anisah, N. Prasetya and I. G. Wenten. (2016). Advances in preparation, modification, and application of polypropylene membrane. J. Polym. Eng., 36, 329-62.

Crick, C. R. and I. P. Parkin. (2010). Hydrophobic effect. Chem. - Eur. J., 16, 3568-88.

Kuo, C-Y., H-N., Lin, H-A. Tsai, D-M. Wang and J-Y. Lai. (2008). Fabrication of a high hydrophobic PVDF membrane via nonsolvent induced phase separation. Desalination, 233, 40-7.

Peng, Y., H. Fan, Y. Dong, Y. Song and H. Han. (2012). Effects of exposure time on variations in the structure and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation. Appl. Surf. Sci., 258, 7872-81.

Peng, Y., H. Fan, J. Ge, S.Wang, P. Chen and Q. Jiang. (2012). The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation. Appl. Surf. Sci., 263, 737-44.

Bakeri, G., A. F. Ismail, D. Rana and T. Matsuura. (2012). Development of high performance surface modified polyetherimide hollow fiber membrane for gas–liquid contacting processes. Chem. Eng. J., 198-199, 327-37.

Rahbari-Sisakht, M., A. F. Ismail, D. Rana and T. Matsuura. (2012). A novel surface modified polyvinylidene fluoride hollow fiber membrane contactor for CO2 absorption. J. Membr. Sci., 415-416, 221-8.

Essalhi, M. and M. Khayet. (2012). Surface segregation of fluorinated modifying macromolecule for hydrophobic/hydrophilic membrane preparation and application in air gap and direct contact. J. Membr. Sci., 417-418: 163-73.

Bakeri, G., T. Matsuura, A. F. Ismail and D. Rana. (2012). A novel surface modified polyetherimide hollow fiber membrane for gas–liquid contacting processes. Sep. Purif. Technol., 89, 160-70.

Rahbari-Sisakht, M., A. F. Ismail, D. Rana and T. Matsuura. (2012). Effect of novel surface modifying macromolecules on morphology and performance of Polysulfone hollow fiber membrane contactor for CO2 absorption. Sep. Purif. Technol., 99, 61-8

Mansourizadeh, A., Z. Aslmahdavi, A. F. Ismail and T. Matsuura. (2014). Blend polyvinylidene fluoride/surface modifying macromolecule hollow fiber membrane contactors for CO2 absorption, Int. J. Greenhouse Gas Control, 26, 83-92.

Efome, J. E., M, Baghbanzadeh, D. Rana, T. Matsuura and C. Q. Lan. (2015). Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination, 373, 47-57.

Pang, H., Z. Chen, H. Gong, M. Du. (2020). Fabrication of a super hydrophobic polyvinylidene fluoride–hexadecyltrimethoxysilane hybrid membrane for carbon dioxide absorption in a membrane contactor. Journal of Membrane Science, 595, 117536.

Kang, M., R. Jung, H-S. Kim and H-J. Jin. (2008). Preparation of superhydrophobic polystyrene membranes by electrospinning, Colloids Surf. Physicochem. Eng. Aspects, 313–314, 411-4.

Lee, M. W., S. An, S. S. Latthe, C. Lee, S. Hong and S. S. Yoon. (2013). Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil. ACS Appl. Mater. Interfaces, 5, 10597-604.

Liao, Y., R. Wang, M. Tian, C. Qiu and A. G. Fane. (2013). Fabrication of polyvinylidene fluoride (PVDF) nanofiber membranes by electro-spinning for direct contact membrane distillation. J. Membr. Sci., 425-426, 30-9.

Patel, S. U. and G. G. Chase. (2014). Separation of water droplets from water-in-diesel dispersion using superhydrophobic polypropylene fibrous membranes. Sep. Purif. Technol., 126, 62-68.

Wang, S., Y. Li, X. Fei, M. Sun, C. Zhang, Y. Li, Q. Yang, and X. Hong. (2011). Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride) (PVDF) mixed with epoxy–siloxane modified SiO2 nanoparticles: A possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle. J. Colloid Interface Sci., 359, 380-8.

Liao, Y., R. Wang and A. G. Fane. (2014). Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation, Environ. Sci. Technol., 48, 6335-41.

Liao, Y., C-H. Loh, R. Wang and A. G. Fane. (2014). Electrospun superhydrophobic membranes with unique structures for membrane distillation, ACS Appl. Mater. Interfaces, 6, 16035-48.

Li, Y., Z. Zhu, J. Yu and B. Ding. (2015). carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application. ACS Appl. Mater. Iterfaces, 7, 13538-46.

Tijing, L. D., Y. C. Woo, W-G. Shim, T. He, J-S. Kim, S-H. Choi and H. K. Shon. (2016). Superhydrophobic nanofiber membrane containing carbon nanotubes for high-performance direct contact membrane distillation, J. Membr. Sci., 502, 158-70.

Yang, C., X-M. Li, J. Gilron, D-f. Kong, Y. Yin, Y. Oren, C. Linder and T. He. (2014). CF4 plasma-modified superhydrophobic PVDF membranes for direct contact membrane distillation. J. Membr. Sci., 456, 155-61.

Yang, C. M., Y. Xie, X-M. Li, B. Zhao, T. He and J. Liu. (2015). Effective evaporation of CF4 plasma modified PVDF membranes in direct contact membrane distillation. J. Membr. Sci., 482, 25-32.

Franco, J. A., S. E. Kentish, J. M. Perera and G. W. Stevens. (2011). Poly(tetrafluoroethylene) sputtered polypropylene membranes for carbon dioxide separation in membrane gas absorption, Ind. Eng. Chem. Res., 50, 4011-20.

Franco, J. A., D. D. deMontigny, S. E. Kentish, J. M. Perera and G. W. Stevens. (2011). Polytetrafluoroethylene (PTFE)-sputtered polypropylene membranes for carbon dioxide separation in membrane gas absorption: hollow fiber configuration, Ind. Eng. Chem. Res., 52, 1376-82.

Lee, S. H., Z. R. Dilworth, E. Hsiao, A. L. Barnette, M. Marino, J. H. Kim, J-G. Kang, T-H. Jung and S. H. Kim. (2011). One-step production of superhydrophobic coatings on flat substrates via atmospheric rf plasma process using non-fluorinated hydrocarbons. ACS Appl. Mater. Interfaces, 3, 476-81.

Bae, B., B. H. Chun and D. Kim. (2001). Surface characterization of microporous polypropylene membranes modified by plasma treatment. Polymer, 42, 7879-85.

Lin, S-H., K-L. Tung, W-J. Chen and H-W. Chang. (2009). Absorption of carbon dioxide by mixed piperazine–alkanolamine absorbent in a plasma-modified polypropylene hollow fiber contactor. J. Membr. Sci., 333, 30-7.

Lv, Y., X. Yu, J. Jia, S-T. Tu, J. Yan and E. Dahlquist. (2012). Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption. Appl. Energy, 90, 167-74.

Ahmad, A. L., H. N. Mohammed, B. S. Ooi and C. P. Leo. (2013). Fabrication and characterization of superhydrophobic layer of low density polyethylene on polypropylene hollow fiber membrane. Caspian Journal of Applied Sciences Research, 2, 52-7.

Ahmad, A. L., H. N. Mohammed, B. S. Ooi and C. P. Leo. (2013). Deposition of a polymeric porous superhydrophobic thin layer on the surface of poly(vinylidenefluoride) hollow fiber membrane. Pol. J. Chem. Technol., 15, 1-6.

Himma, N. F., A. K. Wardani and I. G. Wenten. (2017). Preparation of superhydrophobic polypropylene membrane using dip-coating method: the effects of solution and process parameters. Polymer-Plastics Technology and Engineering, 56, 184-94.

Zhou, H., R. Shi and W. Jin. (2014). Novel organic–inorganic pervaporation membrane with a superhydrophobic surface for the separation of ethanol from an aqueous solution. Sep. Purif. Technol., 127, 61-9.

Zheng, Z., Z. Gu, R. Huo and Y. Ye. (2009). Superhydrophobicity of polyvinylidene fluoride membrane fabricated by chemical vapor deposition from solution. Appl. Surf. Sci., 255, 7263-7.

Razmjou, A., E. Arifin, G. Dong, J. Mansouri and V. Chen. (2012). Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci., 415-416: 850-63.

Liao, Y., R. Wang and A. G. Fane. (2013). Engineering superhydrophobic surface on poly (vinylidene fluoride) nanofiber membranes for direct contact membrane distillation. J. Membr. Sci., 440, 77-87.

Fang, J., H. Wang, X. Wang and T. Lin. (2011). Superhydrophobic nanofibre membranes: effects of particulate coating on hydrophobicity and surface properties. The Journal of the Textile Institute, 103, 937-44: 34-246. Doi:10.1205/cherd.04196.

Kim, K., Heejun Lee, Hyun Sic Park, Hojun Song, Suhan Kim. (2023). Surface modification of polypropylene hollow fiber membranes using fluorosilane for CO2 absorption in a gas-liquid membrane contactor. Heliyon, 9, e19829.

Kumar PS, JA Hogendoorn, PHM Feron, GF Versteeg. 2002.New absorption liquids for the removal of CO2 from dilute gas streams using membrane contactors. Chem Eng Sci. 57:1639-1651.

Cadena, C., J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, E. J. Maginn. (2004). Why is CO2 so soluble in imidazolium-based ionic liquids? J Am Chem Soc., 126, 5300-5308.

Luis, P., A. Garea, A. Irabien. (2009). Zero solvent emission process for sulfur dioxide recovery using a membrane contactor and ionic liquids. J Membr Sci., 330, 80-89.

Luis, P., T. Van Gerven, B. Van der Bruggen. (2012). Recent developments in membrane-based technologies for CO2 capture. Prog Energy Combust Sci,. 38, 419-448.

Ortiz, A., D. Gorri, T. Irabien, I. Ortiz. (2010). Separation of propylene/ propane mixtures using Ag+-RTIL solutions. Evaluation and comparison of the performance of gas–liquid contactors. J Membr Sci,. 360, 130-141.

Elmobarak, W. F., Fares Almomani, Muhammad Tawalbeh, Amani Al-Othman, Remston Martis, Kashif Rasool. (2023). Current status of CO2 capture with ionic liquids: Development and progress, Current status of CO2 capture with ionic liquids: Development and progress, Fuel, 344, 128102.

Xu Yilin, Kunli Goh, Rong Wang, Tae-Hyun Bae. (2019). A review on polymer-based membranes for gas-liquid membrane contacting processes: Current challenges and future direction, Separation and Purification Technology, 229, 115791.

Li, J-L., B.-H. Chen. (2005). Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep. Purif. Technol., 41, 109-122.

A. Gabelman, S.-T. Hwang. (1999). Hollow fiber membrane contactors, J. Membr. Sci., 159, 61-66.

Zhao, S., P. H. M. Feron, L. Deng, E. Favre, E. Chabanon, S. Yan, J. Hou, V. Chen, H. Qi. (2016). Status and progress of membrane contactors in post-combustion carbon capture: A state-of-the-art review of new developments. J. Membr. Sci., 511, 180-206.

Wickramasinghe, S. R., M. J. Semmens, E. L. Cussler. (1992). Mass transfer in various hollow fiber geometries. J. Membr. Sci., 69, 235-250.

Kim, S., Jue Hou, Namita Roy Choudhury, Sandra E. Kentish. (2024). Composite nanofibrous membranes with two-dimensional ZIF-L and PVDF-HFP for CO2 separation. Chemical Engineering Journal, 480, 148124.

Hoff, K. A., O. Juliussen, O. Falk-Pedersen, H. F. Svendsen. (2004). Modeling and experimental study of carbon dioxide absorption in aqueous alkanolamine solutions using a membrane contactor. Ind. Eng. Chem. Res., 43, 4908-4921.

Liu, L., L. Li, Z. Ding, R. Ma, Z. Yang. (2005). Mass transfer enhancement in coiled hollow fiber membrane modules. J Membr Sci., 264, 113-121.

Asimakopoulou, A. G., A. J. Karabelas. (2006). A study of mass transfer in hollow-fiber membrane contactors — The effect of fiber packing fraction. J Membr Sci., 282, 430-441.

Li, J. L., B. H. Chen. (2005). Review of CO2 absorption using chemical solvents in hollow fiber membrane contactors. Sep Purif Technol., 41, 109-122.

Mansourizadeh, A., A. F. Ismail. (2009). Hollow fiber gas–liquid membrane contactors for acid gas capture: A review. J Hazard Mater., 171, 38-53.

Yang, M-C., E. L. Cussler. (1986). Designing hollow-fiber contactors. AIChE J., 32, 1910-1916.

Wickramasinghe, S. R., M. J. Semmens, E. L. Cussler. (1992). Mass transfer in various hollow fiber geometries. J Membr Sci., 69, 235-250.

Jani, J. M., M. Wessling, R. G. H. Lammertink. (2011). Geometrical influence on mixing in helical porous membrane microcontactors. J Membr Sci., 378, 351-358.

Boributh, S., S. Assabumrungrat, N. Laosiripojana, R. Jiraratananon. (2011). Effect of membrane module arrangement of gas–liquid membrane contacting process on CO2 absorption performance: A modeling study. J Membr Sci., 372, 75-86.

Boributh, S., W. Rongwong, S. Assabumrungrat, N. Laosiripojana, R. Jiraratananon. (2012). Mathematical modeling and cascade design of hollow fiber membrane contactor for CO2 absorption by monoethanolamine. J Membr Sci., 401-402, 175-189.

Mavroudi, M., S. P. Kaldis, G. P. Sakellaropoulos. (2006). A study of mass transfer resistance in membrane gas–liquid contacting processes. J Membr Sci., 272, 103-115.

Wang, R., D. F. Li, D. T. Liang. (2004). Modeling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chem Eng Process, 43, 849-856.

Ghobadi, J., D. Ramirez, S. Khoramfar, M. M. Kabir, Jerman Robert, Saeed Muhammad. (2021). Mathematical modeling of CO2 separation using different diameter hollow fiber membranes. International Journal of Greenhouse Gas Control, 104, 103204.

Rezakazemi, M., Z. Niazi, M. Mirfendereski, S. Shirazian, T. Mohammadi, A. Pak. (2011). CFD simulation of natural gas sweetening in a gas–liquid hollow-fiber membrane contactor. Chem Eng J., 168, 1217-1226.

Ghidossi, R., D. Veyret, P. Moulin. (2006). Computational fluid dynamics applied to membranes: state of the art and opportunities. Chem Eng Process: Process Intensification, 45, 437-454.

Faiz, R., M. Al-Marzouqi. (2006). Mathematical modeling for the simultaneous absorption of CO2 and H2S using MEA in hollow fiber membrane contactors. J Membr Sci., 342, 269-278.

Zhang, Z. E., Y. F. Yan, L. Zhang and S. X. Ju. (2014). Hollow fiber membrane contactor absorption of CO2 from the flue gas: Review and perspective. Global NEST Journal, 16(2), 354-373.

Ghasem, N. (2019). Chemical Absorption of CO2 Enhanced by Nanoparticles Using a Membrane Contactor: Modeling and Simulation. Membranes, 9. 150; Doi:10.3390/membranes9110150

Wu, X., B. Zhao, L.Wang, Z. Zhang, M. Li. (2021). Preparation and characterization of superhydrophobic PVDF/HMSNs hybrid membrane for CO2 absorption. Polymer, 214, 123242.

Elhambakhsh A., P. Keshavarz. (2022). Sono-hollow fiber membrane contactors: A new approach for CO2. Journal of Natural Gas Science and Engineering, 101, 104538

Rosli, A., A. L. Ahmad, S. C. Siew. (2020). Enhancing membrane hydrophobicity using silica end-capped with organosilicon for CO2 absorption in membrane contactor. Separation and Purification Technology, 251, 117429.

Gargari, S. F., S. M. Mirfendereski. (2023). Enhanced CO2 removal in hollow fiber membrane contactors using amine-based nanofluids. Journal of Industrial and Engineering Chemistry, 128, 356–368.

Yu, M-C., Li-Ju, Bai, Stefania Moioli, Paitoon Tontiwachwuthikul, Tatiana, V., Plisko, Alexandr, V., Bildyukevich, Ying-Nan Feng, Helei Liu. (2023). Hybrid CO2 capture processes consisting of membranes: A technical and techno-economic review. Advanced Membranes, 3, 100071.

Xue, C-H., S-T. Jia, J. Zhang and J-Z. Ma. (2010). Large-area fabrication of superhydrophobic surfaces for practical applications: An overview. Sci. Technol. Adv. Mater., 11, 033002.

Zhang, D., Y. Zhang, X. Zhang, Chen Li, L. Wang, T. Shun, H. Wu, Q. Lin, and Z. Shi. (2020). Preparation of hydrophobic PVDF/PVC/nano-graphite composite membrane and its self-cleaning properties. Mater. Res. Express, 7, 026407.

Himma, N. F., and I. G. Wenten. (2017). Superhydrophobic membrane contactor for acid gas removal. Journal of Physics: Conf. Series, 877, 012010.

Swati, I. K., Q. Sohaib, H. Khan, M. Younas, A. H. Monjezi, J. Li. (2022). Non-dispersive solvent absorption of post-combustion CO2 in membrane contactors using ionic liquids. Journal of Molecular Liquids, 351, 118566.

Iversen, S. B., V. K. Bhatia, K. Dam-Johansen, G. Jonsson. (1997). Characterization of microporous membranes for use in membrane contactors. J. Membr. Sci., 130, 205.

Strathmann, H., L. Giorno, E. Drioli. (2011). Introduction to membrane science and technology. Wiley-VCH Weinheim.

Ahmad, N. A., C. P. Leo, A. L. Ahmad, W. K. W. Ramli. (2015). Membranes with great hydrophobicity: A review on preparation and characterization, Sep. Purif. Rev., 44, 109.

Abdulhameed, M. A., M. H. D. Othman, A. F. Ismail, T. Matsuura, Z. Harun, Rahman, M. A. M. H. Puteh, J. Jaafar, M. Rezaei and S. K. Hubadillah. (2017). Carbon dioxide capture using a superhydrophobic ceramic hollow fibre membrane for gas-liquid contacting process, J. Cleaner Prod., 140(3), 1731-1738.

Lu, J., Y. Yu, J. Zhou, L. Song, X. Hu and A. Larbot. (2009). FAS grafted superhydrophobic ceramic membrane. Appl. Surf. Sci., 255, 9092-9.

Hadri, N. E. L., D. V. Quang, M. R. M. Abu-Zahra. (2015). Study of novel solvent for CO2 post- combustion capture. Energy Procedia, 75, 2268-2286.

Singh, P., G. F. Versteeg. (2008). Structure and activity relationships for CO2 regeneration from aqueous amine-based absorbents. Process. Saf. Environ., 86, 347-359.

Al Marzouqi, M. H., M. A. Abdulkarim, S. A. Marzouk, M. H. El-Naas, H. M. Hasanain. (2005). Facilitated transport of CO2 through immobilized liquid membrane. Ind. Eng. Chem. Res., 44, 9273-9278.

Singto, S., T. Supap, R. Idem, P. Tontiwachwuthikul, S. Tantayanon, M. J., Al-Marri, A. Benamor. (2016). Synthesis of new amines for enhanced carbon dioXide (CO2) capture performance: the effect of chemical structure on equilibrium solubility, cyclic capacity, kinetics of absorption and regeneration, and heats of absorption and regeneration. Sep. Purif. Technol., 167, 97-107.

Kim, Y. E., J. A. Lim, S. K. Jeong, Y. I., Yoon, S. T. Bae, S. C. Nam. (2013). Comparison of carbon dioXide absorption in aqueous MEA, DEA, TEA, and AMP solutions. B. Kor. Chem. Soc,. 34, 783-787.

Rahbari-Sisakht, M., A. F. Ismail, D. Rana, T. Matsuura,, D. Emadzadeh. (2013). Effect of SMM concentration on morphology and performance of surface modified PVDF hollow fiber membrane contactor for CO2 absorption. Sep. Purif. Technol., 116, 67-72. https://doi.org/10.1016/j.seppur.2013.05.008.

Lin, Y. F., W. W. Wang, C. Y. Chang. (2018). Environmentally sustainable, fluorine-free and waterproof breathable PDMS/PS nanofibrous membranes for carbon dioxide capture, J. Mater. Chem. A., 6, 9489-9497. https://doi.org/10.1039/c8ta00275d.

Rezaei DashtArzhandi, M., A. F. Ismail, T. Matsuura, B. C. Ng, M.S. Abdullah. (2015). Fabrication and characterization of porous polyetherimide/montmorillonite hollow fiber mixed matrix membranes for CO2 absorption via membrane contactor. Chem. Eng. J., 269, 51-59. https://doi.org/10.1016/j.cej.2015.01.095.

Rezaei-Dashtarzhandi, M., A. F. Ismail, P. S. Goh, I. Wan Azelee, M. Abbasgholipourghadim, G. Ur Rahman, T Matsuura. (2016). Zeolite ZSM5-filled PVDF hollow fiber mixed matrix membranes for efficient carbon dioxide removal via membrane contactor. Ind. Eng. Chem. Res., 55, 12632-12643. https://doi. org/10.1021/acs.iecr.6b03117.

Wu, X., B. Zhao, L. Wang, Z. Zhang, H. Zhang, X. Zhao, X. Guo. (2016). Hydrophobic PVDF/graphene hybrid membrane for CO2 absorption in membrane contactor, J. Memb. Sci., 520, 120-129. https://doi.org/10.1016/j.memsci.2016.07.025.

Liang, W., Y. Chenyang, Z. Bin, W. Xiaona, Y. Zijun, , Z. Lixiang, Z., Hongwei, L. Nanwen. (2019). Hydrophobic polyacrylonitrile membrane preparation and its use in membrane contactor for CO2 absorption. J. Memb. Sci., 569, 157-165. https://doi.org/10.1016/j.memsci.2018.09.066.

Li, Y., L. Wang, X. Hu, P. Jin, X. Song. (2018). Surface modification to produce superhydrophobic hollow fiber membrane contactor to avoid membrane wetting for biogas purification under pressurized conditions. Sep. Purif. Technol. 194, 222-230, https://doi.org/10.1016/j.seppur.2017.11.041.

Lin,Y., Y. Xu, C.H. Loh, R. Wang. (2018). Development of robust fluorinated TiO2/PVDF composite hollow fiber membrane for CO2 capture in gas-liquid membrane contactor. Appl. Surf. Sci., 436, 670-681, https://doi.org/10.1016/j.apsusc.2017.11.263.

Xu,Y., Y. Lin, M. Lee, C. Malde, R. Wang. (2018). Development of low mass-transfer transferresistance fluorinated TiO2-SiO2/PVDF composite hollow fiber membrane used for biogas upgrading in gas-liquid membrane contactor. J. Memb. Sci., 552, 253-264. https://doi.org/10.1016/j.memsci.2018.02.016.

Lee, H. J., J. H. Park. (2016). Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Al2O3) hollow fiber membrane contactor. J.Memb. Sci., 518, 79-87.https://doi.org/10.1016/j.memsci.2016.06.038.

Lin, Y. F., Q. Ye, S. H. Hsu, T. W. Chung. (2016). Reusable fluorocarbon-modified electrospun PDMS/PVDF nanofibrous membranes with excellent CO2 absorption performance. Chem. Eng. J., 284, 888-895. https://doi.org/10.1016/j.cej.2015.09.063.

Lin, Y., J. Kuo. (2016). Mesoporous bis(trimethoxysilyl)hexane (BTMSH)/tetraethyl orthosilicate (TEOS)-based hybrid silica aerogel membranes for CO2 capture. Chem. Eng. J., 300, 29-35.https://doi.org/10.1016/j.cej.2016.04.119.

Lin, Y.-F., Y.-J. Lin, C.-C. Lee, K.-Y. A., Lin, T.-W., Tung, K.-L Chung. (2018). Synthesis of mechanically robust epoxy cross-linked silica aerogel membranes for CO2 capture. J. Taiwan Inst. Chem. Eng., 87, 117-122. https://doi.org/10.1016/j.jtice.2018.03.019.

Zhang, Y., R. Wang. (2014). Novel method for incorporating hydrophobic silica nanoparticles on polyetherimide hollow fiber membranes for CO2 absorption in a gas–liquid membrane contactor. J. Memb. Sci., 452, 379-389. https://doi.org/10.1016/j.memsci.2013.10.011.

Lee, H. J., Y. G. Park, M. K. Kim, S. H. Lee, J. H. Park. (2019). Study on CO2 absorption performance of lab-scale ceramic hollow fiber membrane contactor by gas/liquid flow direction and module design. Sep. Purif. Technol., 220, 189-196.

H. J. Lee, E. Magnone, J. H. Park. (2017). Preparation, characterization and laboratory-scale application of modified hydrophobic aluminum oxide hollow fiber membrane for CO2 capture using H2O as low-cost absorbent. J. Membr. Sci., 494, 143-153.

H. J. Lee, J. H. Park. (2016). Effect of hydrophobic modification on carbon dioxide absorption using porous alumina (Al2O3) hollow fiber membrane contactor. J. Membr. Sci., 518, 79-87.

Hafeez, S., T. Safdar, E. Pallari, G. Manos, E. Aristodemou, Z. Zhang, S. M., Al-Salem. (2021). Achilleas Constantinou, CO2 capture using membrane contactors: A systematic literature review. Front. Chem. Sci. Eng., 15(4), 720-754.

Li, L., G. Ma, Z. Pan, N. Zhang, and Z. Zhan. (2020). Research progress in gas separation using hollow fiber membrane contactors. Membranes, 10, 380. Doi:10.3390/membranes10120380.

Zhang, H., K. Xue, C. Cheng, D. Gao. (2021). Haiping Chen, Study on the performance of CO2 capture from flue gas with ceramic membrane contactor. Separation and Purification Technology, 265, 118521.

Saud, I. H., M. H. D. Othman, S. K. Hubadillah, M. H. A. Aziz, M. A. B. Pauzan, A. F. Ismail, Jaafar J., M. A. Rahman. (2021). Superhydrophobic ceramic hollow fibre membranes for trapping carbon dioxide from natural gas via the membrane contactor system. Australian Journal of the Australian Ceramic Society, 57, 705-717.

Zhang, Z. E., Y. F. Yan, D. A. Wood, W. X. Zhang, L. X. Li, L. Zhang, B. Van der Bruggen. (2015). Influence of the membrane module geometry on SO2 removal: A numerical study, Ind. Eng. Chem. Res., 54(46): 11619-11627, https://doi.org/10.1021/acs.iecr.5b03374.

Majidi, R., J. Parhizkar, E. Karamian. (2018). Photocatalytic removal of NOx gas from air by TiO2/polymer composite nanofibers. Nanochem. Res., 3(2), 212-218.10.22036/ncr.2018.02.011.

Yu K. H., F. Can, P. Ergenekon. (2022). Nitric oxide and nitrite removal by partial denitrifying hollow-fiber membrane biofilm reactor coupled with nitrous oxide generation as energy recovery. Environ. Technol., 43(19), 2934-2947. https://doi.org/10.1080/09593330.2021.1910348.

Downloads

Published

2024-07-22

How to Cite

K. Pabby, A., & Mahajan-Tatpate, P. (2024). Hollow Fiber Contactors with Improved Hydrophobicity for Acid Gas Removal: Progress and Recent Advances. Journal of Applied Membrane Science & Technology, 28(2), 49–84. https://doi.org/10.11113/amst.v28n2.296

Issue

Section

Articles