A Comprehensive Examination of Low GO-Silica Loading in Pebax1657/PEI Thin Film Nano-composite Membranes for Gas Dehydration

Authors

  • A. R. Valagohar Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE), Persian Gulf University (PGU), P.O. Box 75169-13798, Bushehr, Iran
  • S. A. Hashemifard Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE), Persian Gulf University (PGU), P.O. Box 75169-13798, Bushehr, Iran
  • M. A. Ghanavatyan Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE), Persian Gulf University (PGU), P.O. Box 75169-13798, Bushehr, Iran
  • A. Khosravi Sustainable Membrane Technology Research Group (SMTRG), Faculty of Petroleum, Gas and Petrochemical Engineering (FPGPE), Persian Gulf University (PGU), P.O. Box 75169-13798, Bushehr, Iran

DOI:

https://doi.org/10.11113/amst.v28n2.294

Keywords:

TFN, TFC, Dehydration, Graphene Oxide (GO), SiO2

Abstract

The aim of this study was to assess the effectiveness of blending Pebax1657 polymer with SiO2-GO nanoparticles in the production of TFN membranes for N2 gas dehydration. By utilizing dip coating, nanoparticles were incorporated at varying concentrations. The resulting nanocomposites were subjected to thorough analysis to investigate their chemical structure, physical morphology, surface topology, and thermal stability. This examination encompassed the application of FTIR, SEM, CA, AFM, and TGA techniques. The results demonstrated that the samples displayed good thermal stability and a highly hydrophilic surface. The investigation concluded that the dehydration properties of TFN membranes are influenced by a variety of factors, such as morphology, plasticization, and hydrophilic attributes. The effectiveness of the system is contingent upon the contribution made by each individual nanoparticle. The impact of SiO2 nanoparticles in their pure form is clearly evident in the 0.5 wt% loaded composite membrane membrane. When 0.5% of SiO2 nanoparticles are introduced into the composite membrane, the morphology closely resembles the ideal state due to the non-porous nature of SiO2 and the low concentration of nanoparticles, hence a selectivity of ~560 is experienced. Fortunately this selectivity is beyond the need of the industries. Consequently, there was a reduction in water vapor and nitrogen permeability, resulting in a heightened selectivity ratio. These discoveries hold considerable importance in industrial settings, as they offer a more comprehensive understanding of the topic.

References

A. Tabe-Mohammadi. (1999) .A review of the applications of membrane separation technology in natural gas treatment. Separation Science and Technology, 34(10), 2095-2111.

A. Smith and J. Klosek. (2001). A review of air separation technologies and their integration with energy conversion processes. Fuel Processing Technology, 70(2), 115-134.

D. Aaron and C. Tsouris. 2005. Separation of CO2 from flue gas: a review. Separation Science and Technology, 40(1-3), 321-348.

S. A. S. C. Samarasinghe. (2019). Development of ternary-component mixed-matrix membranes for advanced gas separations. Thesis. Nanyang Technological University, Singapore.

L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal. (2013). Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination, 308, 15-33.

S. A. Hashemifard, A. Khosravi, F. Abdollahi, Z. Alihemati, and M. Rezaee. 2020. Synthetic polymeric membranes for gas and vapor separations. Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability, Elsevier, 217-272.

F. Binci, F. E. Ciarapica, and G. Giacchetta. (2003). Natural gas dehydration in offshore rigs: Comparison between traditional glycol plants and innovative membrane systems. Int Membr Sci Technol Conf.

H. Lin et al. (2012). Dehydration of natural gas using membranes. Part I: Composite membranes. Journal of Membrane Science, 413, 70-81.

H. Lin et al. (2013). Dehydration of natural gas using membranes. Part II: Sweep/countercurrent design and field test. Journal of Membrane Science, 432, 106-114,

S. Hashemifard, M. Abdulhameed, E. Ghaderi, Z. Alihemati, and A. Ismail. 2023. Parametric and modelling study of H2O-induced plasticization in PEI-TFC membrane for gas dehydration. Separation and Purification Technology, 314, 123564.

J. R. Du, L. Liu, A. Chakma, and X. Feng. (2010). Using poly (N, N-dimethylaminoethyl methacrylate)/polyacrylonitrile composite membranes for gas dehydration and humidification. Chemical Engineering Science, 65(16), 4672-4681.

H. Chen et al. (2018). An experimental study of membranes for capturing water vapor from flue gas. Journal of the Energy Institute, 91(3), 339-348.

H. Cong, M. Radosz, B. F. Towler, and Y. Shen. (2007). Polymer–inorganic nanocomposite membranes for gas separation. Separation and purification technology, 55(3), 281-291.

M. Aroon, A. Ismail, T. Matsuura, and M. Montazer-Rahmati. (2010). Performance studies of mixed matrix membranes for gas separation: A review. Separation and purification Technology, 75(3), 229-242.

M. Zahid, A. Rashid, S. Akram, Z. A. Rehan, and W. Razzaq. (2018). A comprehensive review on polymeric nano-composite membranes for water treatment. J. Membr. Sci. Technol., 8(1), 1-20.

M. Bassyouni, M. Abdel-Aziz, M. S. Zoromba, S. Abdel-Hamid, and E. Drioli. (2019). A review of polymeric nanocomposite membranes for water purification. Journal of Industrial and Engineering Chemistry, 73, 19-46,

M. I. Baig, P. G. Ingole, W. K. Choi, S. R. Park, E. C. Kang, and H. K. Lee. (2016). Development of carboxylated TiO2 incorporated thin film nanocomposite hollow fiber membranes for flue gas dehydration. Journal of Membrane Science, 514, 622-635.

M. I. Baig, P. G. Ingole, J.-d. Jeon, S. U. Hong, W. K. Choi, and H. K. Lee. (2019). Water vapor transport properties of interfacially polymerized thin film nanocomposite membranes modified with graphene oxide and GO-TiO2 nanofillers. Chemical Engineering Journal, 373, 1190-1202.

J. H. Kim, S. Y. Ha, and Y. M. Lee. (2001). Gas permeation of poly (amide-6-b-ethylene oxide) copolymer. Journal of Membrane Science, 190(2), 179-193.

G. Dennis and G. O Brien. (2000). Polyether block amide resins:" bridging the gap between thermoplastics and rubbers. Papers-American Chemical Society Division of Rubber ChemistrY, 21.

J. Aburabie and K.-V. Peinemann. (201.). Crosslinked poly (ether block amide) composite membranes for organic solvent nanofiltration applications. Journal of Membrane Science, 523, 264-272.

Y. Yampolskii, L. Starannikova, N. Belov, M. Gringolts, E. Finkelshtein, and V. Shantarovich. (2010). Addition‐type polynorbornene with Si (CH3)3 side groups: Detailed study of gas permeation, free volume and thermodynamic properties. Membrane Gas Separation, 43-57.

F. H. Akhtar, M. Kumar, and K.-V. Peinemann. (2017). Pebax® 1657/Graphene oxide composite membranes for improved water vapor separation. Journal of Membrane Science, 525, 187-194.

S. J. Poormohammadian, P. Darvishi, A. M. G. Dezfuli, and M. Bonyadi. (2018). Incorporation of functionalized silica nanoparticles into polymeric films for enhancement of water absorption and water vapor transition. Fibers and Polymers, 19(10), 2066-2079.

S. J. Poormohammadian, P. Darvishi, and A. M. G. Dezfuli. (2019). Enhancing natural gas dehydration performance using electrospun nanofibrous sol-gel coated mixed matrix membranes. Korean Journal of Chemical Engineering, 36(6), 914-928.

Y. Liu et al. (2019). Synthesis of novel high flux thin-film nanocomposite nanofiltration membranes containing GO–SiO2 via interfacial polymerization. Industrial & Engineering Chemistry Research, 58(49), 22324-22333,

M.-C. Hsiao et al. (2013). Thermally conductive and electrically insulating epoxy nanocomposites with thermally reduced graphene oxide–silica hybrid nanosheets. Nanoscale, 5(13), 5863-5871.

M. Sheikh, M. Asghari, and M. Afsari. (2018). Effect of tiny amount of zinc oxide on morphological and thermal properties of nanocomposite PEBA thin films. Alexandria Engineering Journal, 57(4), 3661-3669.

N. Norahim, K. Faungnawakij, A. T. Quitain, and C. Klaysom. (2019). Composite membranes of graphene oxide for CO2/CH4 separation. Journal of Chemical Technology & Biotechnology, 94(9), 2783-2791.

Behzad Kord1 Mohammad Dahmardeh Ghalehno·Farnaz Movahedi1. (2020). Effect of surface functionalization of SiO2 nanoparticles on the dynamic mechanical, thermal and fire properties of wheat straw/LDPE composites. Journal of Polymers and the Environment, 28, 304-316.

Adikwu Gowon Jacob1,2,3 and Roswanira Abdul Wahab. (2022). Preliminary studies and characterization of oil palm frond leaves silica-based bonded lipase. Science Letters, 16(2).

M. S. Abdul Wahab, S. Abd Rahman, and R. Abu Samah. (2021). Super selective dual nature GO bridging PSF-GO-Pebax thin film nanocomposite membrane for IPA dehydration. Polymer-Plastics Technology and Materials, 60(6), 670-679.

R. S. Murali, A. Ismail, M. Rahman, and S. Sridhar. (2014). Mixed matrix membranes of Pebax-1657 loaded with 4A zeolite for gaseous separations. Separation and Purification Technology, 129, 1-8.

Downloads

Published

2024-07-22

How to Cite

Valagohar, A. R., Hashemifard, S. A., Ghanavatyan, M. A., & Khosravi, A. (2024). A Comprehensive Examination of Low GO-Silica Loading in Pebax1657/PEI Thin Film Nano-composite Membranes for Gas Dehydration. Journal of Applied Membrane Science & Technology, 28(2), 27–48. https://doi.org/10.11113/amst.v28n2.294

Issue

Section

Articles