Opinions on the Development of Ultrahigh Permeation Membranes

Authors

  • Takeshi Matsuura Department of Chemical and Biological Engineering, University of Ottawa 161 Louis Pasteur, Ottawa, Ont. K1N 6N5 Canada

DOI:

https://doi.org/10.11113/amst.v28n1.287

Keywords:

Ultrahigh permeation membranes, Reverse osmosis, Membrane distillation, Membrane chips, Future prospect

Abstract

In this work, recent progresses made in the development of membranes with ultrahigh permeation rate for reverse osmosis (RO) and membrane distillation (MD) are briefly summarized and the future prospect of those membranes is discussed. In fabrication of ultrahigh permeation RO membranes, carbon nanotube, aquaporin, graphene and fluorous oligoamide nanorings were used and in all of them several orders of magnitude higher fluxes than the conventional commercial membranes were achieved. Ultrahigh MD membranes were fabricated mostly from carbonaceous materials also with several orders of magnitude higher fluxes than conventional commercial membranes, except for those made of ultrathin polymeric material, which demonstrated a high flux at a low transmembrane temperature difference. Despite these remarkable achievements, it was concluded that many challenges would be encountered to produce a sufficient amount of water by the so-called membrane chips.

References

Hummer, G., J. C. Rasaiah, and J. P. Noworyta. (2001). Water conduction through the hydrophobic channel of a carbon nanotube. Nature, 414, 188-190.

Kalra, A., S. Garde, and G. Hummer. (2003). Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U.S.A., 100, 10175-10180.

Holt, J. K., H.,G. Park, Y. Wang, M. Stadermann, A.,B. Artyukhin, C.,P. Grigoropoulos, A. Noy, and O. Bakajin. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312, 1034-1037.

Li, Y., Z. Li, F. Aydin, J. Quan, X. Chen, Y.-C. Yao, C. Zhan, Y. Chen, T. A. Pham, and A. Noy. (2020). Water-ion permselectivity of narrow-diameter carbon nanotubes. Sci. Adv., 6, eaba9966.

Tunuguntla, R., R. Y. Henley, Y.-C. Yao, T. A. Pham, M. Wanunu, and A. Noy. (2017). Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube. Science, 25, 792-796.

Cruz-Silva, R., S. Inukai, T. Araki, A. Morelos-Gomez, J. Ortiz-Medina, K. Takeuchi, T. Hayashi, A. Tanioka, S. Tejima, T. Noguchi, M. Terrones, and M. Endo. (2016). High performance and chlorine resistant carbon nanotube/aromatic polyamide reverse osmosis nanocomposite membrane. MRS Adv., 1, 1469-1476.

Lee, K. P., T. C. Arnot, and D. Mattia. (2011). A review of reverse osmosis membrane materials for desalination - development to date and future potential. J. Membr. Sci., 370, 1-22.

Kim, H. J., K. Choi, Y. Baek, D.-G. Kim, J. Shim, J. Yoon, and J.-C. Lee. (2014). High-Performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl. Mater. Interfaces, 6, 2819-2829.

Zhang, L., G.-Z. Shi, S. Qiu, L.-H. Cheng, and H.-L. Chen. (2011). Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. Desalin. Water Treat., 34, 19-24.

Inukai, S., R. Cruz-Silva, J. Ortiz-Medina, A. Morelos-Gomez, K. Takeuchi, T. Hayashi, A. Tanioka, T. Araki, S. Tejima, T. Noguchi, M. Terrones, and M. Endo. (2015). High-performance multi-functional reverse osmosis membranes obtained by carbon nanotube·polyamide nanocomposite. Sci. Rep., 5, 13562.

Kim, H. J., M.-Y. Lim, K. H. Jung, D.-G. Kim, and J.-C. Lee. (2015). High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides. J. Mater. Chem. A., 3, 6798-6809.

Zhao, H., S. Qiu, L. Wu, L. Zhang, H. Chen, and C. Gao. (2014). Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Membr. Sci., 450, 249-256.

Kumar, M., M. A. Khan, and H. A. Arafat. (2020). Recent developments in the rational fabrication of thin film nanocomposite membranes for water purification and desalination. ACS Omega, 5, 3792-3800.

Jensen, M. O., and O. G. Mouritsen. (2006). Single-channel water permeabilities of escherichia coli aquaporins AqpZ and GlpF. Biophys. J., 90, 2270-2284.

Hovijitra, N. T., J. J. Wuu, B. Peaker, and J. R. Swartz. (2009). Cell-free synthesis of functional aquaporin z in synthetic liposomes. Biotechnol. Bioeng., 104, 10.

Kumar, M., M. Grzelakowski, J. Zilles, M. Clark, and W. Meier. (2007). Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. Proc. Natl. Acad. Sci. U.S.A., 104, 20719-20724.

Tang, C. Y., Y. Zhao, R. Wang, C. Hélix-Nielsen, and A. G. Fane. (2013). Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 308, 34-40.

Zhao, Y., C. Qiu, X. Li, A. Vararattanavech, W. Shen, J. Torres, C. Hélix-Nielsen, R. Wang, X. Hu, and A.G. Fane. (2012). Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Membr. Sci., 423-424, 422-428.

Li, Y., Qi, S., Tian, M., Widjajanti, W., and R. Wang. (2019). Fabrication of aquaporin-based biomimetic membrane for seawater desalination. Desalination, 46, 103-112.

HFFO®2 module – Aquaporin, https://aquaporin.com/wp-content/uploads/2021/10/Aquaporin-HFFO2-Datasheet-web.pdf. Retrieved on October 22, 2022.

Cohen-Tanugi, D., and J. C. Grossman. (2012). Water desalination across nanoporous graphene. Nano Lett., 12, 3602-3608.

Surwade, S. P., S. N. Smirnov, I. V. Vlassiouk, R. R. Unocic, G. M. Veith, S. Dai, and S. M. Mahurin. (2015). Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol., 10, 459-464.

O’Hern, S. C., D. Jang, S. Bose, J.-C. Idrobo, Y. Song, T. Laoui, J. Kong, and R. Karnik. (2015). Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano. Lett., 15, 3254-3260.

Groundbreaking Graphene Membrane Manufactured at Commercial Scale, https://www.globenewswire.com/en/news-release/2022/03/16/2404098/0/en/Groundbreaking-Graphene-Membrane-Manufactured-at-Commercial-Scale.html. Retrieved on October 22, 2022.

Akbari, A., P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya, and M. Majumder. (2016). Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide. Nat. Commun., 7, 10891.

Zhang, Z., L. Zou, C. Aubry, M. Jouiad, and Z. Hao. (2016). Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane, J. Membr. Sci., 515, 2042-11.

Itoh, Y., S. Chen, R. Hirahara, T. Konda, T. Aoki, T. Ueda, I. Shimada, J. J. Cannon, C. Shao, J. Shiomi, K. V. Tabata, H. Noji, K. Sato, and T. Aida. (2022). Ultrafast water permeation through nanochannels with a densely fluorous interior surface. Science, 376, 738-743.

Chen, W., S. Chen, T. Liang, Q. Zhang, Z. Fan, H. Yin, K.-W. Huang, X. Zhang, Z. Lai , and P. Sheng. (2018). High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotechnology, 13, 345-351.

Gong D., Y. Yin, H. Chen, B. Guo, P. Wu, Y. Wang, Y. Yang, Z. Li, Y. He, and G. Zeng. (2021). Interfacial ions sieving for ultrafast and complete desalination through 2D nanochannel defined graphene composite membranes. ACS Nano, 15, 9871-9881.

Sun, C., Q. Lyu, Y. Si, T. Tong, L.-C. Lin, F. Yang, C. Y. Tang, and Y. Dong. (2022). Superhydrophobic carbon nanotube network membranes for membrane distillation: High-throughput performance and transport mechanism. Environ. Sci. Technol., 56, 5775-5785.

Lu, D., Z. Zhou, Z. Wang, D. T. Ho, G. Shen, L. Chen, Y. Zhao, X. Li, L. Gao, U. Schwingenschlögl, J. Ma and Z. Lai. (2022). An ultrahigh-flux nanoporous graphene membrane for sustainable seawater desalination using low-grade heat. Adv. Mater., 34, e2109718.

Chen, X., Y.-B. Zhu, H. Yu, J. Z. Liu, C. D. Easton, Z. Wang, Y. Hu, Z. Xie, H.-A. Wu, X. Zhang, D. Li, and H. Wang. (2021). Ultrafast water evaporation through graphene membranes with subnanometer pores for desalination. J. Membr. Sci., 621, 118934.

Chen, H., X. Liu, D. Gong, C. Zhu, G. Liu, J. Fan, P. Wu, Z. Li, Y. Pan, G. Shi, Y. Sun, and G. Zeng. (2023). Ultrahigh-water-flux desalination on graphdiyne membranes. Nature Water, 1, 800-807. https://doi.org/10.1038/s44221-023-00123-3.

Qtaishat, M. R., M. Obaid, T. Matsuura, A. Al-Samhouri, J.-G. Lee, S. Soukane, and N. Ghaffour. (2022). Desalination at ambient temperature and pressure by a novel class of biporous anisotropic membrane. Scientific Reports, 12, 13564. Foi: 10.1038/s41598-022-17876-8 (2022).

A. Giwa, S. W. Hasan, A. Yousuf, S. Chakraborty, D. J. Johnson, and N. Hilal. (2017). Biomimetic membranes: A critical review of recent progress. Desalination, 420, 403-424.

Downloads

Published

2024-03-28

How to Cite

Matsuura, T. (2024). Opinions on the Development of Ultrahigh Permeation Membranes . Journal of Applied Membrane Science & Technology, 28(1), 63–71. https://doi.org/10.11113/amst.v28n1.287

Issue

Section

Articles