Investigating Hydrocarbon Gases Permeability Through Hollow Fiber Hybrid Carbon Membrane
DOI:
https://doi.org/10.11113/amst.v28n1.284Keywords:
Carbon Membranes, Carbon, Gas separation, Thermodynamic Properties, Hydrocarbon, PermeabilityAbstract
Hydrocarbon separation from natural gases is a critical procedure in the chemical and petrochemical industries. This study used hollow fiber carbon membranes (HFCMs) made from a commercially available co-polyimide, P84, with zeolite-carbon composite (ZCC) as a filler to separate light hydrocarbons like CH4/C3H8 and CH4/C2H6. The Arrhenius technique was used to evaluate the effects of temperature fluctuations (298, 323, and 373 K) on the membrane. X-ray diffraction exhibited a characteristic graphite peak at 2θ ~ 44°, indicating the creation of an effective carbon membrane. SEM investigation revealed the compactness of both pristine and hybrid carbon membrane structures. The operating temperature has a significant influence on the gas penetration through the membrane when evaluating gas permeation. The hybrid carbon membrane has the highest permeability for CH4, C2H6, and C3H8 at 373 K. (81.86, 61.82, and 58.28 Barrer, respectively). The carbon membrane also showed greatest selectivity for CH4/C3H8 and CH4/C2H6 at 323 K (2.24 and 2.04, respectively). Adsorption and surface diffusion were the membrane's transport mechanisms. By adding filler to the membrane, the gas permeability was temperature dependent.
References
A. Mohamed, S. Yousef, V. Makarevicius, A. Tonkonogovas. (2023). GNs/MOF-based mixed matrix membranes for gas separations. Int. J. Hydrogen Energy, 48, 19596-19604. https://doi.org/https://doi.org/10.1016/j.ijhydene.2023.02.074.
A. K. Zulhairun, R. Wijiyanti, N. Widiastuti, P. S. Goh, A. F. Ismail. (2020). Prospects of nanocomposite membranes for natural gas treatment. In: Nanocomposite Membr. Water Gas Sep. Elsevier. 355-378. https://doi.org/10.1016/B978-0-12-816710-6.00014-6.
G.- E. Alvarez. (2020). Optimization of the integration among traditional fossil fuels, clean energies, renewable sources, and energy storages: An MILP model for the coupled electric power, hydraulic, and natural gas systems. Comput. Ind. Eng., 139, 106141. https://doi.org/10.1016/j.cie.2019.106141.
I. Tirouni, M. Sadeghi, M. Pakizeh. (2015). Separation of C3H8 and C2H6 from CH4 in polyurethane-zeolite 4Å and ZSM-5 mixed matrix membranes. Sep. Purif. Technol., 141, 394-402. https://doi.org/10.1016/j.seppur.2014.12.012.
A. F. Ismail, K. Chandra Khulbe, T. Matsuura. (2015). Gas Separation Membranes. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-319-01095-3.
Z. Wu. (2019). Inorganic membranes for gas separations. In: Membr. Sep. Princ. Appl. Elsevier. 147-179. https://doi.org/10.1016/B978-0-12-812815-2.00005-3.
S. Tanizume, S. Maehara, K. Ishii, T. Onoki, T. Okuno, H. Tawarayama, S. Ishikawa, M. Nomura. (2021). Reaction of methanol to olefin using a membrane contactor on a silica substrate. Sep. Purif. Technol., 254, 117647. https://doi.org/10.1016/j.seppur.2020.117647.
S. Tanizume, T. Yoshimura, K. Ishii, M. Nomura. (2021). Control of sequential mto reactions through an MFI-type zeolite membrane contactor. Membranes (Basel). 10, 117647. https://doi.org/10.3390/membranes10020026.
Y. Sugiyama, S. Ikarugi, K. Oura, A. Ikeda, E. Matsuyama, R. Ono, M. Nomura, H. Tawarayama, T. Saito, K. Kuwahara. (2015). MFI zeolite membranes prepared on novel silica substrates. J. Chem. Eng. Japan, 48, 891-896. https://doi.org/10.1252/jcej.15we014.
J. Yoshiura, K. Ishii, Y. Saito, T. Nagataki, Y. Nagataki, A. Ikeda, M. Nomura. (2020). Permeation properties of ions through inorganic silica-based membranes. Membranes (Basel), 10, 1-11. https://doi.org/10.3390/membranes10020027.
K. Ishii, A. Shibata, T. Takeuchi, J. Yoshiura, T. Urabe, Y. Kameda, M. Nomura. (2019). Development of silica membranes to improve dehydration reactions. J. Japan Pet. Inst., 62, 211-219. https://doi.org/10.1627/jpi.62.211.
W. H. Chen, C. W. Tsai, Y. L. Lin. (2017). Numerical studies of the influences of bypass on hydrogen separation in a multichannel Pd membrane system. Renew. Energy, 104, 259-270. https://doi.org/10.1016/j.renene.2016.12.032.
E. P. Favvas, G. E. Romanos, F. K. Katsaros, K. L. Stefanopoulos, S. K. Papageorgiou, A. C. Mitropoulos, N. K. Kanellopoulos, K. Nick. (2016). Gas permeance properties of asymmetric carbon hollow fiber membranes at high feed pressures. J. Nat. Gas Sci. Eng., 31, 842-851. https://doi.org/10.1016/j.jngse.2016.03.089.
M. Rungta, G. B. Wenz, C. Zhang, L. Xu, W. Qiu, J. S. Adams, W. J. Koros. (2017). Carbon molecular sieve structure development and membrane performance relationships. Carbon N. Y., 115, 237-248. https://doi.org/https://doi.org/10.1016/j.carbon.2017.01.015.
J. B. S. Hamm, A. Ambrosi, J. G. Griebeler, N. R. Marcilio, I. C. Tessaro, L. D. Pollo. (2017). Recent advances in the development of supported carbon membranes for gas separation. Int. J. Hydrogen Energy, 42, 24830-24845. https://doi.org/10.1016/j.ijhydene.2017.08.071.
H. Li, K. Haas-santo, U. Schygulla, R. Dittmeyer. (2015). Inorganic microporous membranes for H2 and CO2 separation-Review of experimental and modeling progress. 127, 401-417. https://doi.org/10.1016/j.ces.2015.01.022.
O. Salinas, X. Ma, Y. Wang, Y. Han, I. Pinnau. (2017). Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity. RSC Adv., 7, 3265-3272. https://doi.org/10.1039/c6ra24699k.
R. Wijiyanti, A. R. Kumala Wardhani, R. A. Roslan, T. Gunawan, Z. Abdul Karim, A. F. Ismail, N. Widiastuti. (2020). Enhanced gas separation performance of polysulfone membrane by incorporation of zeolite-templated carbon. Malaysian J. Fundam. Appl. Sci., 16, 128-134. https://doi.org/10.11113/mjfas.v16n2.1472.
R. Wijiyanti, A. N. Ubaidillah, T. Gunawan, Z. A. Karim, A. F. Ismail, S. Smart, R. Lin, N. Widiastuti. (2019). Polysulfone mixed matrix hollow fiber membranes using zeolite templated carbon as a performance enhancement filler for gas separation. Chem. Eng. Res. Des., 150, 274-288. https://doi.org/10.1016/j.cherd.2019.08.004.
I. S. Caralin, A. R. Widyanto, N. Widiastuti, R. Wijiyanti, T. Gunawan, Z. A. Karim, M. Nomura, Y. Yoshida. (2021). Annealing treatment for enhancing of H2/C3H8 separation performance on polysulfone membrane. AIP Conf. Proc., American Institute of Physics, 020065. https://doi.org/10.1063/5.0052177.
I. S. Caralin, A. R. Widyanto, N. Widiastuti, R. Wijiyanti, T. Gunawan, Z. A. Karim, M. Nomura, Y. Yoshida. (2022). Elevated H2/N2 separation performance by annealing post-treatment of polysulfone hollow fiber membrane. Rasayan J. Chem., 15, 2292-2298. https://doi.org/10.31788/RJC.2022.1546962.
N. Widiastuti, I. S. Caralin, A. R. Widyanto, R. Wijiyanti, T. Gunawan, Z. A. Karim, M. Nomura, Y. Yoshida. (2022). Annealing and TMOS coating on PSF/ZTC mixed matrix membrane for enhanced CO2 /CH4 and H2/CH4 separation. R. Soc. Open Sci., 9, 322-334. https://doi.org/10.1098/rsos.211371.
R. Wijiyanti, I. S. Caralin, A. R. Widyanto, T. Gunawan, Z. A. Karim, A. F. Ismail, M. Nomura, N. Widiastuti. (2023). Evaluation of different carbon-modified zeolite derivatives preparation methods as a filler in mixed matrix membrane on their gas separation performance. Microporous Mesoporous Mater. 359, 112650. https://doi.org/10.1016/j.micromeso.2023.112650.
T. Gunawan, T. Q. Romadiansyah, R. Wijiyanti, W. N. Wan Salleh, N. Widiastuti. (2019). Zeolite templated carbon: Preparation, characterization and performance as filler material in co-polyimide membranes for CO2/CH4 separation. Malaysian J. Fundam. Appl. Sci., 15, 407-413. https://doi.org/10.11113/mjfas.v15n3.1461.
P. Sari, T. Gunawan, W. N. Wan Salleh, A. F. Ismail, N. Widiastuti. (2019). Simple method to enhance O2/N2 separation on P84 co-polyimide hollow fiber membrane. IOP Conf. Ser. Mater. Sci. Eng., 546, 042042. https://doi.org/10.1088/1757-899X/546/4/042042.
N. Widiastuti, T. Gunawan, H. Fansuri, W. N. W. Salleh, A. F. Ismail, N. Sazali. (2020). P84/ZCC hollow fiber mixed matrix membrane with PDMS coating to enhance air separation performance. Membranes (Basel). 10, 267. https://doi.org/10.3390/membranes10100267.
T. Gunawan, N. Widiastuti, H. Fansuri, W. N. Wan Salleh, A. F. Ismail, R. Lin, J. Motuzas, S. Smart. (2021). The utilization of micro-mesoporous carbon-based filler in the P84 hollow fibre membrane for gas separation. R. Soc. Open Sci., 8, https://doi.org/10.1098/rsos.201150.
T. Gunawan, R. P. Rahayu, R. Wijiyanti, W. N. W. Salleh, N. Widiastuti. (2019). P84/zeolite-carbon composite mixed matrix membrane for CO2/CH4 separation, Indones. J. Chem., 19, 650-659. https://doi.org/10.22146/ijc.35727.
A. R. Widyanto, I. S. Caralin, N. Widiastuti, T. Gunawan, R. Wijiyanti, W. N. W. Salleh, A. F. Ismail, M. Nomura, K. Suzuki. (2022). N2/CH4 separation behavior at elevated temperature on P84 hollow fiber carbon membrane. Mater. Today Proc., 65, 3093-3100. https://doi.org/10.1016/j.matpr.2022.05.533.
X. Ma, R. Swaidan, B. Teng, H. Tan, O. Salinas, E. Litwiller, Y. Han, I. Pinnau. (2013). Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor. Carbon N. Y., 62, 88-96. https://doi.org/10.1016/j.carbon.2013.05.057.
N. Widiastuti, A. R. Widyanto, I. S. Caralin, T. Gunawan, R. Wijiyanti, W. N. Wan Salleh, A. F. Ismail, M. Nomura, K. Suzuki. (2021). Development of a P84/ZCC Composite Carbon Membrane for Gas Separation of H2/CO2 and H2/CH4. ACS Omega, 6, 15637-15650. https://doi.org/10.1021/acsomega.1c00512.
A. R. Widyanto, I. S. Caralin, N. Widiastuti, T. Gunawan, R. Wijiyanti, W. N. W. Salleh, A. F. Ismail, M. Nomura, K. Suzuki. (2021). Improvement N2/SF6 separation performance on P84 derived carbon membrane by incorporating of zeolite-carbon composite. AIP Conf. Proc., American Institute of Physics. 020008. https://doi.org/10.1063/5.0052171.
F. H. Saboor, O. Hajizadeh. (2020). Separation of light hydrocarbons: A minireview. Adv. J. Chem. A., 2020, 777-788. https://doi.org/10.22034/AJCA.2020.114713.
K. A. Stevens, J. D. Moon, H. Borjigin, R. Liu, R. M. Joseph, J. S. Riffle, B. D. Freeman. (2020). Influence of temperature on gas transport properties of tetraaminodiphenylsulfone (TADPS) based polybenzimidazoles. J. Memb. Sci., 593. https://doi.org/10.1016/j.memsci.2019.117427.
S. Fu, E. S. Sanders, S. S. Kulkarni, G. B. Wenz, W. J. Koros. (2015). Temperature dependence of gas transport and sorption in carbon molecular sieve membranes derived from four 6FDA based polyimides: Entropic selectivity evaluation. Carbon N. Y., 95, 995-1006. https://doi.org/10.1016/j.carbon.2015.09.005.
S. Fu, E. S. Sanders, S. Kulkarni, Y. H. Chu, G. B. Wenz, W. J. Koros. (2017). The significance of entropic selectivity in carbon molecular sieve membranes derived from 6FDA/DETDA:DABA(3:2) polyimide. J. Memb. Sci., 539, 329-343. https://doi.org/10.1016/j.memsci.2017.06.007.
M. Yoshimune, I. Fujiwara, K. Haraya. (2007). Carbon molecular sieve membranes derived from trimethylsilyl substituted poly (phenylene oxide) for gas separation. Carbon, 45, 553-560. https://doi.org/10.1016/j.carbon.2006.10.017.
Y. K. Kim, H. B. Park, Y. M. Lee. (2005). Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: Effect of the molecular weight of polyvinylpyrrolidone. J. Memb. Sci., 251, 159-167. https://doi.org/10.1016/j.memsci.2004.11.011.
R. Wijiyanti, T. Gunawan, N. S. Nasri, Z. A. Karim, A. F. Ismail, N. Widiastuti. (2019). Hydrogen adsorption characteristics for zeolite-Y templated carbon. Indones. J. Chem., 20, 29. https://doi.org/10.22146/ijc.38978.
T. Gunawan, R. Wijiyanti, N. Widiastuti. (2018). Adsorption–desorption of CO2 on zeolite-Y-templated carbon at various temperatures. RSC Adv., 8, 41594-41602. https://doi.org/10.1039/C8RA09200A.
Z. Yang, H. Peng, W. Wang, T. Liu. (2010). Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J. Appl. Polym. Sci., 116, 2658-2667. https://doi.org/10.1002/app.
Y. Wang, J. E. Panzik, B. Kiefer, K. K. M. Lee. (2012). Crystal structure of graphite under room-temperature compression and decompression. Sci. Rep., 2, 520. https://doi.org/10.1038/srep00520.
L. Olivieri, A. Tena, M. G. De Angelis, A. Hernández Giménez, A. E. Lozano, G. C. Sarti. (2016). The effect of humidity on the CO2/N2 separation performance of copolymers based on hard polyimide segments and soft polyether chains: Experimental and modeling. Green Energy Environ., 1, 201-210. https://doi.org/10.1016/j.gee.2016.09.002.
N. Sazali, W. N. W. Salleh, A. F. Ismail, N. H. Ismail, M. A. Mohamed, N. A. H. M. Nordin, M. N. M. M. Sokri, Y. Iwamoto, S. Honda. (2018). Enhanced gas separation performance using carbon membranes containing nanocrystalline cellulose and BTDA-TDI/MDI polyimide. Chem. Eng. Res. Des., 140, 221-228. https://doi.org/10.1016/j.cherd.2018.09.039.
X. He, M.-B. B. Hägg. (2012). Structural, kinetic and performance characterization of hollow fiber carbon membranes, J. Memb. Sci., 390-39123-31. https://doi.org/10.1016/j.memsci.2011.10.052.
P. S. Tin, T. S. Chung, Y. Liu, R. Wang. (2004). Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon N. Y., 42, 3123-3131. https://doi.org/10.1016/j.carbon.2004.07.026.
N. Widiastuti, T. Gunawan, H. Fansuri, W. N. W. Salleh, A. F. Ismail, N. Sazali. (2020). P84/ZCC hollow fiber mixed matrix membrane with PDMS coating to enhance air separation performance. Membranes (Basel)., 10, 267. https://doi.org/10.3390/membranes10100267.
M. Kiyono, P. J. Williams, W. J. Koros. (2010). Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. J. Memb. Sci., 359, 2-10. https://doi.org/10.1016/j.memsci.2009.10.019.
J. Gilron, A. Soffer. (2002). Knudsen diffusion in microporous carbon membranes with molecular sieving character. J. Memb. Sci., 209, 339-352. https://doi.org/https://doi.org/10.1016/S0376-7388(02)00074-1.
F. J. Sotomayor, K. A. Cychosz, M. Thommes, F. Sotomayor, K. A. Cychosz, M. Thommes. (2018). Characterization of Micro/mesoporous materials by physisorption : Concepts and case studies. Accounts Mater. Surf. Res., 3, 34-50.
N. H. Ismail, W. N. W. Salleh, N. Sazali, A. F. Ismail. (2018). Development and characterization of disk supported carbon membrane prepared by one-step coating-carbonization cycle. J. Ind. Eng. Chem., 57, 313-321. https://doi.org/10.1016/j.jiec.2017.08.038.
S. S. Hosseini, T. S. Chung. (2009). Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification. J. Memb. Sci., 328, 174-185. https://doi.org/10.1016/j.memsci.2008.12.005.
Y. Wu, J. Zhou, B. Zhang, D. Zhao, L. Li, Y. Lu, T. Wang. (2016). Fabrication and gas permeation of CMS/C composite membranes based on polyimide and phenolic resin. RSC Adv., 6, 75390-75399. https://doi.org/10.1039/C6RA12476C.
E. P. Favvas, G. E. Romanos, S. K. Papageorgiou, F. K. Katsaros, A. C. Mitropoulos, N. K. Kanellopoulos. (2011). A methodology for the morphological and physicochemical characterisation of asymmetric carbon hollow fiber membranes. J. Memb. Sci., 375, 113-123. https://doi.org/10.1016/j.memsci.2011.03.028.
L. T. Y. Au, W. Yin Mui, P. Sze Lau, C. Tellez Ariso, K. L. Yeung. (2001). Engineering the shape of zeolite crystal grain in MFI membranes and their effects on the gas permeation properties. Microporous Mesoporous Mater., 47, 203-216. https://doi.org/10.1016/S1387-1811(01)00380-8.
M. P. Bernal, J. Coronas, M. Menéndez, J. Santamaría. (2002). Characterization of zeolite membranes by temperature programmed permeation and step desorption. J. Memb. Sci., 195, 125-138. https://doi.org/10.1016/S0376-7388(01)00557-9.
Z. Lai, M. Tsapatsis. (2004). Gas and organic vapor permeation through b-oriented MFI membranes. Ind. Eng. Chem. Res., 43, 3000-3007. https://doi.org/10.1021/ie034096s.
J. C. Poshusta, R. D. Noble, J. L. Falconer. (1999). Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. J. Memb. Sci., 160, 115-125. https://doi.org/10.1016/S0376-7388(99)00073-3.
G. G. Kagramanov, I. P. Storojuk, E. N. Farnosova. (2016). Vapour and acid components separation from gases by membranes principles and engineering approach to membranes development. J. Phys. Conf. Ser., 751, https://doi.org/10.1088/1742-6596/751/1/012039.
A. Khosravi, M. Sadeghi, H. Z. Banadkohi, M. M. Talakesh. (2014). Polyurethane-silica nanocomposite membranes for separation of propane/methane and ethane/methane. Ind. Eng. Chem. Res., 53, 2011-2021. https://doi.org/10.1021/ie403322w.
Q. Wang, F. Huang, C. J. Cornelius, Y. Fan. (2021). Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations. J. Memb. Sci., 621, 118785. https://doi.org/10.1016/j.memsci.2020.118785.
L. Xu, M. Rungta, M. K. Brayden, M. V. Martinez, B. A. Stears, G. A. Barbay, W. J. Koros. (2012). Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J. Memb. Sci., 423-424, 314-323. https://doi.org/10.1016/j.memsci.2012.08.028.
K. M. Steel, W. J. Koros. (2005). An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon N. Y., 43, 1843-1856. https://doi.org/10.1016/j.carbon.2005.02.028.
R. L. Tseng, F. C. Wu, R. S. Juang. (2015). Adsorption of CO2 at atmospheric pressure on activated carbons prepared from melamine-modified phenol-formaldehyde resins. Sep. Purif. Technol., 140, 53-60. https://doi.org/10.1016/j.seppur.2014.11.018.
D. Tondeur, E. Kvaalen. (1987). Equipartition of entropy production. An optimality criterion for transfer and separation processes. Ind. Eng. Chem. Res., 26, 50-56. https://doi.org/10.1021/ie00061a010.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.