Industrial Textile Wastewater Treatment by Crossflow NF Membrane Filtration

Authors

  • K. C. Chong ᵃDepartment of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Kajang 43000, Selangor, Malaysia ᵇCentre of Photonics and Advanced Material Research, Universiti Tunku Abdul Rahman, Malaysia
  • S. O. Lai ᵃDepartment of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Kajang 43000, Selangor, Malaysia ᵇCentre of Photonics and Advanced Material Research, Universiti Tunku Abdul Rahman, Malaysia
  • W. C. Chong ᵃDepartment of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Kajang 43000, Selangor, Malaysia ᵇCentre of Photonics and Advanced Material Research, Universiti Tunku Abdul Rahman, Malaysia
  • Y. L. Pang ᵃDepartment of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Kajang 43000, Selangor, Malaysia ᵇCentre of Photonics and Advanced Material Research, Universiti Tunku Abdul Rahman, Malaysia
  • S. K. Mah ᵃDepartment of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Kajang 43000, Selangor, Malaysia ᵇCentre of Photonics and Advanced Material Research, Universiti Tunku Abdul Rahman, Malaysia
  • J. H. Teong Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman (UTAR), Jalan Sungai Long, Kajang 43000, Selangor, Malaysia

DOI:

https://doi.org/10.11113/amst.v27n3.281

Keywords:

Textile wastewater, nanofiltration, membrane, crossflow, permeability

Abstract

Ineffective dyeing procedures frequently lead to the release of approximately 10–50% of the dye applied, which does not adhere to the fabric and is consequently discharged into the environment along with the effluent. This situation is undesirable both for potential recycling within the textile manufacturing process and because of its adverse environmental pollution effects.  This study thoroughly examines nanofiltration (NF) membrane characteristics and their performance in textile wastewater treatment. Pristine NF membrane surfaces were revealing a web-like structure with well-defined pores predominantly in the membrane active region. This assessment confirms the membrane initial cleanliness, free from any external contaminants, which is vital for effective membrane-based filtration. Additionally, the study investigates how different feed flow rates affect water flux during NF membrane filtration. The results demonstrate a clear relationship, where the increasing flow rates boost water flux. This can be attributed to heightened cross-flow velocity and shear force on the membrane surface due to the increased water flux, minimizing external concentration polarization and reducing membrane fouling. The impact of feed flow rate on membrane separation efficiency is also examined, showing consistent efficiency at feed flow rates between 2 LPM and 5 LPM (approximately 80.8% to 82.22%). However, efficiency drops as the feed flow rate increases from 5 LPM to 6 LPM, likely due to increased pressure drop across the membrane, affecting separation efficiency.

References

K. Farhana, A. S. F. Mahamude, M. T. Mica. (2022). The scenario of textile industrial in Malaysia: A review for potentiality. Matr. Circ. Econ., 4, 20-25. Doi: https://doi.org/10.1007/s42824-022-000630-5.

A. Ali, M. Hasseb. (2019). Radio frequency identification (RFID) technology as a strategic tool towards higher performance of supply chain operations in textile and apparel industry of Malaysia. Uncertain Supply Chain Manage., 7, 215-226. Doi: 10.5267/j.uscm.2018.10.004.

B. Ślusarczyk, M. Haseeb, H. I. Hussain. (2019). Fourth industrial revolution: A way forward to attain better performance in the textile industry. Eng. Manag. Prod. Serv., 11, 52-69. Doi: https://doi.org/10.2478/emj-2019-0011.

M. F. Abdullah, W. S. Lai, H. M. Isa. (2018). Technical efficiency in Malaysian textile manufacturing industry: A stochastic frontier analysis (SFA) approach. Int. J. Econ. Manag., 12, 407-419. http://www.ijem.upm.edu.my/vol12no2/4)%20Technical%20Efficiency.pdf.

H. Prasetyo, M. N. A. M. Norrdin, M. H. D. Othman, J. Jaafar, T. Yoshioka, Z. Li, M. A. Rahman. (2022). Technologies for treating wastewater from textile industry: A review. Mater. Today: Proc., 65, 3066-3072. Doi: https://doi.org/10.1016/j.matpr.2022.04.214

M. A. Fatah. (2018). Nanofiltration systems and applications in wastewater treatment. Ain Shams Eng. J., 9, 3077-3092. Doi: https://doi.org/10.1016/j.asej.2018.08.001.

J. Zheng, R. Zhao, A. A. Uliana, Y. Liu, D. Donnea, X. Zhang, D. Xu, Q. Gao, P. Jin, Y. Liu, A. Volodine, J. Zhu, B. V. D. Bruggen. (2022). Separation of textile wastewater using a highly permeable resveratrol-based loose nanofiltration membrane with excellent anti-fouling performance. J. Che. Eng., 434, 134705-134716. Doi: https://doi.org/10.1016/j.cej.2022.134705.

J. Lin, Q. Chen, X. Huang, Z. Yan, X. Lin, W. Ye, S. Arcadio, P. Luis, J. Bi, B. V. D. Bruggen, S. Zhao. (2021). Integrated loose nanofiltration-electrodialysis process for sustainable resource extraction from high-salinity textile wastewater. J. Hazard. Mater., 419, 126505-126514. Doi: https://doi.org/10.1016/j.jhazmat.2021.126505

N. Cao, C. Yue, Z. Lin, W. Li, H. Zhang, J. Pang, Z. Jiang. (2021). Durable and chemical resistant ultra-permeable nanofiltration membrane for the separation of textile wastewater. Hazard. Mater., 414, 125489-125497. Doi: https://doi.org/10.1016/j.jhazmat.2021.125489

A. Gul, J. Hruza, F. Yalcinkaya. (2021). Fouling and chemical cleaning of microfiltration membranes: A mini review. Polymers, 13, 846-871. Doi: https://doi.org/10.3390/polym13060846.

X. Cheng, Y. Liu, X. Lu, X. Zhu, J. Xu, X., Zhang, D. Wu, F. Chen, H. Liang. (2023). 3D nano-structured sepiolite dynamic membranes for enhanced ultrafiltration treatment and membrane fouling mitigation, J. Environ. Chem. Eng., 11, 110942-110952. Doi: https://doi.org/10.1016/j.jece.2023.110942.

D. Shao, W. Yang, H. Xiao, Z. Wang, C. Zhou, X. Cao, S. Sun. (2020). Self-cleaning nanofiltration membranes by coordinated regulation of carbon quantum dots and polydopamine. ACS Appl. Mater. Interfaces, 12, 580-590. Doi: https://doi.org/10.1021/acsami.9b16704.

C. Bhattacharjee, V. K. Saxena, S. Dutta. (2020). Static turbulence promoters in cross-flow membrane filtration: A review. Chem. Eng. Commun., 207: 413-433. Doi: https://doi.org/10.1080/00986445.2019.1587610.

J. E. Kim, S. Phuntsho, F. Lotfi, K. Shon. (2013). Investigation of pilot-scale 8040 FO membrane module under different operating conditions for brackish water desalination. Desalin. Wate Tret., 53, 2782-2791.

Doi: https://doi.org/10.1080/19443994.2014.931528.

C. Lu, Y. Bao, J. Huang. (2021). Fouling in membrane filtration for juice processing, Curr. Opin. Food Sci., 42, 76-85.

Doi: https://doi.org/10.1016/j.cofs.2021.05.004.

S. Kerdi, A. Qamar, J. S. Vrouwenvelder, N. Ghaffour. (2021). Effect of localized hydrodynamics on biofilm attachment and growth in a cross-flow filtration channel. Water Res., 188, 116502-116515.

Doi: https://doi.org/10.1016/j.watres.2020.116502.

B. Bräsel, S. Yoo, S. Huber, M. Wessling, J. Linkhorst. (2023). Evolution of particle deposits at communicating membrane pores during crossflow filtration. J. Membr. Sci., 686, 121977-121986.

Doi: https://doi.org/10.1016/j.memsci.2023.121977.

C. Li, Y. Guo, L. Shen, C. Ji, N. Bao. (2019). Scalable concentration process of graphene oxide dispersions via cross-flow membrane filtration, Chem. Eng. Sci., 200, 127-137.

Doi: https://doi.org/10.1016/j.ces.2019.01.045.

J. Y. Chuah, K. C. Chong, S. O. Lai, W. J. Lau, S. S. Lee, H. M. Ong. (2018). Industrial nickel wastewater rejection by polyimide membrane. Chem. Eng. Trans., 63, 697-702.

Doi: https://doi.org/10.3303/CET1863117.

N. N. Safi, S. S. Ibrahim, N. Zouli, H. S. Majdi, Q. F. Alsalhy, E. Drioli, A. Figoli. (2020). A systematic framework for optimizing a sweeping gas membrane distillation (SGMD). Membranes, 10, 254-272.

Doi: https://doi.org/10.3390/membranes10100254.

Downloads

Published

2023-11-20

How to Cite

Chong, K. C., Lai, S. O., Chong, W. C., Pang, Y. L., Mah, S. K., & Teong, J. H. (2023). Industrial Textile Wastewater Treatment by Crossflow NF Membrane Filtration. Journal of Applied Membrane Science & Technology, 27(3), 111–117. https://doi.org/10.11113/amst.v27n3.281

Issue

Section

Articles