Preparation of a Novel Proton Exchange Membrane Using Radiation Grafted ETFE Film for Fuel Cell

Authors

  • Shahnaz Sultana Nuclear and Radiation Chemistry Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka-1349, Bangladesh
  • Nazia Rahman Nuclear and Radiation Chemistry Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka-1349, Bangladesh
  • Md. Nabul Sardar Nuclear and Radiation Chemistry Division, Institute of Nuclear Science and Technology, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka-1349, Bangladesh
  • A. K. M. Akther Hossain Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

DOI:

https://doi.org/10.11113/amst.v27n3.276

Keywords:

Degree of grafting, ethylene tetrafluoroethylene, FTIR, polymer electrolytes, proton exchange membrane

Abstract

For many different applications, functional polymeric materials are extremely important in electrochemical reactions. The development of polymer electrolytes, such as those used in fuel cells, depends heavily on these functional materials. One of the most significant sources of power for applications in numerous industries is provided by fuel cells. In this study, a proton exchange membrane (PEM) was developed using ethylene tetrafluoroethylene (ETFE) film with binary blends of acrylic acid (AA) and sodium styrene sulfonate (SSS), while NaCl served as an additive. As the monomer concentration increased, the degree of grafting (DG) increased. Gravimetric analyses, Fourier Transform Infrared (FTIR) spectroscopy, mechanical characteristics, and surface morphology (SEM) have all supported the radiation grafting. The physical and chemical durability of 60% DG of ETFE-g-AA-SSS film made it an ideal PEM for this study since it is more durable than other grafted samples of ETFE-g-AA-SSS film. The 60% DG of PEM's ion-exchange capacity (IEC) was determined to be 0.26 mmol g-1. They demonstrated excellent thermal, mechanical, and acid stability characteristics. In H2O2 solutions, they are highly stable, and they display significant water uptake. It is therefore applicable to acidic fuel cells.

References

M. Ahmed, M. A. Khan, Md. R. Miah, S. A. Monim, and M. Anwar. (2011). Gamma radiation-induced graft copolymerization of styrene onto polyethyleneterephthalate films: Application in fuel cell technology as a proton exchange membrane. J. Macromol. Sci. A., 48, 927. Doi: 10.1080/10601325.2011.614865.

T. Yamaki, K. Kobayashi, M. Asano, H. Kubota, M. Yoshida, (2004). Preparation of proton exchange membranes based on crosslinked polytetrafluoroethylene for fuel cell applications. Polym., 45(19), 6569-6573. Doi: https://doi.org/10.1016/j.polymer.2004.07.048.

M. Abdolahifard, S. H. Bahrami, R. M. A. Malek. (2011). Surface modification of PET fabric by graft copolymerization with acrylic acid and its antibacterial properties. Int. Sch. Res. Notices, Doi:https://doi.org/10.5402/2011/265415.

S. Sultana, N. Rahman, M. Razzak, N. Sarder. (2023). Environ. Diallyl dimethyl ammonium chloride (DADMAC) and acrylic acid (AAc) embedded nonwoven irradiated polyethylene fabric as efficient adsorbent to separate U(VI) from aqueous solution. Environ. Res. Tec., 6(1), 21-34. Doi: https://doi.org/10.35208/ert.1188385.

D. Shao, Y. Li, X . Wang, S. Hu, J. Wen, J. Xion,M. A. Asiri, H. M. Marwani. (2017). Phosphate-functionalized polyethylene with high adsorption of Uranium (VI). ACS Omega, 2(7), 3267-3275. Doi:https://doi.org/10.1021/acsomega.7b00375.

M. Agarwal, K. Singh. (2017). Heavy metal removal from wastewater using various adsorbents: A review. J. Water Reuse Desalination, 7(4), 387-419. Doi: https://doi.org/10.2166/wrd.2016.104.

N. Rahman, N. C. Dafader, S. Sultana, F. T. Ahmed, A. R. Miah. (2020). Application of acrylic acid and sodium styrene sulfonate grafted non-woven PE fabric in methylene blue removal. Res. J. Chem. Environ., 24(6), 36-43.

J. Zu, F. Tang, L. He, L. Fu. (2018). Facile synthesis and properties of a cation exchange membrane with bifunctional groups prepared by pre-irradiation graft copolymerization. RSC Adv. 8, 25966-25973. Doi: https://doi.org/10.1039/C8RA03472A.

N. Rahman, N. C. Dafader, A. R. Miah, F. Alam, S. Sultana. (2018). Preparation of amidoxime adsorbent by radiation induced grafting of acrylonitrile on polyethylene film and its application in Cr(VI) Removal. J. Phys. Sci., 29(2), 65-88. Doi:10.21315/jps2018.29.2.5.

X. Wang, L. Song, F. Yang, J. He. (2016). Investigation of phosphate adsorption by a polyethersulfone-type affinity membrane using experimental and DFT methods. Desalination Water Treat, 57(52), 25036-25056. Doi:10.1080/19443994.2016.1144533

M. M. Nasef. (2000). Gamma radiation-induced graft copolymerization of styrene onto poly(ethyleneterephthalate) films. J. Appl. Polym. Sci., 77(5), 1003-1012. Doi: https://doi.org/10.1002/1097-4628(20000801)77:5<1003::AID-APP7>3.0.CO;2-K.

R. F. Khedr. (2022). Synthesis of amidoxime adsorbent by radiation-induced grafting of acrylonitrile/acrylic acid on polyethylene film and its application in Pb removal. Polymers, 14(15), 3136. Doi: https://doi.org/10.3390/polym14153136.

G. Calleja, A. Houdayer, S. Etienne-Calas, D. Bourgogne, V. Flaud, G. Silly, S. Shibahara, A. Takahara, A. Jourdan, A. Hamwi, B. Ameduri. (2011). Conversion of poly(ethylene-alt-tetrafluoroethylene) copolymers into polytetrafluoroethylene by direct fluorination: A convenient approach to access new properties at the ETFE surfacez. J. Polym. Sci. Part A: Pol. Chem., 49(7), 1517-1527. https://doi.org/10.1002/pola.24588.

M. M. Nasefa, H. Saidi, K. Z. M. Dahlan. (2009). Single-step radiation induced grafting for preparation of proton exchange membranes for fuel cell. J. Membr. Sci., 339(1-2), 115-119. https://doi.org/10.1016/j.memsci.2009.04.037

C. Gonzalez-Blanco, L. J. Rodriguez, M. M. Velazquez. (1997). Effect of the Addition of water-soluble polymers on the structure of aerosol OT water-in-oil microemulsions: A fourier transform infrared spectroscopy study. Langmuir, 13(7), 1938-1945. https://doi.org/10.1021/la960451q.

M. M. Nasef, H. Saidi, H. M. Nor, O. M. Foo. (2000). Cation exchange membranes by radiation-induced graft copolymerization of styrene onto PFA copolymer films. II. Characterization of sulfonated graft copolymer membranes. J. Appl. Polym. Sci., 76(1), 1-11. Doi: https://doi.org/10.1002/(SICI)1097-4628(20000404)76:1<1::AID-APP1>3.0.CO;2-4.

A. Sahin. (2018). The development of Speek/Pva/Teos blend membrane for proton exchange membrane fuel cells. Electrochim. Acta., 271, 127-136. Doi:10.1016/j.electacta.2018.03.145.

J. Zhao, D. Song, J. Jia, N. Wang, K. Liu, T. Zuo, Q. Che. (2022). Constructing proton exchange membranes with high and stable proton conductivity at subzero temperature through vacuum assisted flocculation technique. Appl. Surf. Sci., 585, 152579. Doi: 10.1016/j.apsusc.2022.152579.

X. Li, H. Zhang, C. Lin, Z. He, V. Ramani. (2022). Quantitative analysis of proton exchange membrane prepared by radiation-induced grafting on ultra-thin FEP film. Int. J. Hydrog. Energy, 47(3), 1874-1887 Doi: 10.1016/j.ijhydene.2021.10.234

K. Lin, C. Wang, Z. Qiu, Y. Yan. (2022). Enhancement of proton conductivity performance in high temperature polymer electrolyte membrane, processed the adding of pyridobismidazole. Polymers, 14(7), 1283. Doi: https://doi.org/10.3390/polym14071283.

G. Sun, K. Han, J. Yu, H. Zhu, Z. Wang. (2016). Non-planar backbone structure polybenzimidazole membranes with excellent solubility, high proton conductivity, and better anti-oxidative for HT-PEMFCs. RSC Adv., 6, 91068-91076. Doi: https://doi.org/10.1039/C6RA18197J.

L. Wang, J. J. Brink, Y. Liu, A. M. Herring, J. Ponce-González, D. K. Whelligan, J. R. Varcoe. (2017). Non-fluorinated pre-irradiation-grafted (peroxidated) LDPE-based anion-exchange membranes with high performance and stability. Energy Environ. Sci., 10, 2154-2167. Doi: 10.1039/C7EE02053H

P. Sithambaranathan, M. M. Nasef, A. Ahmad, A. Abbasi, T. M. Ting. (2023). Heterocyclic Monomer Mixtures. Membranes, 13(1), 105. https://doi.org/10.3390/membranes13010105.

M. Ahmed, M. B. Khan, M. A. Khan, S. S. Alam, M. A. Halim, M. A. H. Khan. (2011). Characterization of polyethyleneterephthalate (PET) based proton exchange membranes prepared by UV-radiation-induced graft copolymerization of styrene. J. Power Sources, 196(2), 614-619. Doi: https://doi.org/10.1016/j.jpowsour.2010.08.004.

J. Chen, M. Asano, T. Yamaki, M. Yoshida. (2006). Preparation and characterization of chemically stable polymer electrolyte membranes by radiation-induced graft copolymerization of four monomers into ETFE films. J. Membr. Sci., 269, 194 Doi: https://doi.org/10.1016/j.memsci.2005.06.035.

P. Velayutham, A. K. Sahu, S. Parthasarathy. (2017). A nafion-ceria composite membrane electrolyte for reduced methanol crossover in direct methanol fuel cells. Energies, 10(2), 259. Doi: https://doi.org/10.3390/en10020259.

27. S. M. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, S. Kaliaguine. (2000). Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci., 173, 17-34. Doi: 10.1016/S0376-7388(00)00345-8.

28. A. Roy, H. S. Lee, J. E. McGrath. (2008). Hydrophilic–hydrophobic multiblock copolymers based on poly(arylene ether sulfone)s as novel proton exchange membranes – Part B. Polymer, 49(23), 5037-5044. Doi:10.1016/j.polymer.2008.08.046.

Downloads

Published

2023-11-20

How to Cite

Sultana, S., Rahman, N., Sardar, M. N., & Hossain, A. K. M. A. (2023). Preparation of a Novel Proton Exchange Membrane Using Radiation Grafted ETFE Film for Fuel Cell . Journal of Applied Membrane Science & Technology, 27(3), 81–95. https://doi.org/10.11113/amst.v27n3.276

Issue

Section

Articles