Copper Extraction Using LIX 84 as a Mobile Carrier in the Emulsion Liquid Membrane Process

Authors

  • Izzat Naim Shamsul Kahar Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Ahmad Syuhaib Ali Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norasikin Othman ᵃFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇCentre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Norul Fatiha Mohamed Noah ᵃFaculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia ᵇCentre of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute for Scientific and Industrial Research (ISI-SIR), Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Sazmin Sufi Suliman Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/amst.v27n3.275

Keywords:

Emulsion liquid membrane, liquid waste, metal recovery, copper, LIX 84

Abstract

Extensive research has been conducted to address the growing global demand for copper by exploring effective methods of extraction and recovery across various industries. The emulsion liquid membrane (ELM) has emerged as a viable option for efficiently extracting and recovering metals from waste solutions. Due to its advantageous features, the extraction and recovery of copper from a simulated copper solution was investigated. In the ELM, various parameters can affect the stability and efficiency of copper extraction which include agitation speed, treat ratio (TR), stripping agent, and carrier concentration. However, certain parameters such as homogenizer speed, emulsification time, surfactant concentration, extraction time, and pH of the simulated feed solution were kept constant in this study. The most favourable parameters for achieving maximum copper extraction and recovery were determined such as TR of 1:3, agitation speed (250 rpm), LIX 84 (0.2 M) in kerosene as the carrier, and H2SO4 (0.5 M) as the stripping agent. Using these conditions, approximately 74% of the copper was extracted while 37% was recovered with an acceptable ELM stability indicated by a 20% membrane swelling. This research demonstrates the significant potential of the ELM process for extracting copper from wastewater generated by various industries.

References

G. K. Kinuthia, V. Ngure, D. Beti, R. Lugalia, A. Wangila, L. Kamau. (2020). Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci. Rep., 10, 1-13. https://doi.org/10.1038/s41598-020-65359-5.

M. Jaishankar, T. Tseten, N. Anbalagan, B. B. Mathew, K. N. Beeregowda. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol., 7, 60-72. https://doi.org/10.2478/intox-2014-0009.

P. Popa, M. Timofti, M. Voiculescu, S. Dragan, C. Trif, L. P. Georgescu. (2012). Study of physico-chemical characteristics of wastewater in an urban agglomeration in Romania. Sci. World J. 1-10. https://doi.org/10.1100/2012/549028.

G. Mansourri, M. Madani. (2016). Examination of the level of heavy metals in wastewater of Bandar Abbas wastewater treatment plantz. Open J. Ecol., 6 55-61. https://doi.org/10.4236/oje.2016.62006.

M. A. Agoro, A. O. Adeniji, M. A. Adefisoye, O. O. Okoh. (2020). Heavy metals in wastewater and sewage sludge from selected municipal treatment plants in Eastern Cape Province, South Africa. Water, 12, 1-19. https://doi.org/10.3390/w12102746.

S. Ramanayaka, S. Keerthanan, M. Vithanage. (2020). Urban mining of E-waste: Treasure hunting for precious nanometals, in: Handb. Electron. Waste Manag. Int. Best Pract. Case Stud., INC. 19-54. https://doi.org/10.1016/B978-0-12-817030-4.00023-1.

M. Kasaie, H. Bahmanyar, M. A. Moosavian. (2017). A kinetic study on solvent extraction of copper from sulfate solution with Cupromex-3302 using Lewis cell. J. Environ. Chem. Eng., 5, 3044-3050. https://doi.org/10.1016/j.jece.2017.06.013.

M. El Batouti, N. F. Al-Harby, M. M. Elewa. (2021). A review on promising membrane technology approaches for heavy metal removal from water and wastewater to solve water crisis. Water, 13, 1-62. https://doi.org/10.3390/w13223241.

F. Fu, Q. Wang. (2011). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage., 92, 407-418. https://doi.org/10.1016/j.jenvman.2010.11.011.

G. Crini, E. Lichtfouse. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett., 17, 145-155. https://doi.org/10.1007/s10311-018-0785-9.

N. A. A. Qasem, R. H. Mohammed, D. U. Lawal. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, 4, 1-15. https://doi.org/10.1038/s41545-021-00127-0.

A. L. Ahmad, Z. M. H. M. Shafie, N. D. Zaulkiflee, W. Y. Pang. (2019). Preliminary study of emulsion liquid membrane formulation on acetaminophen removal from the aqueous phase. Membranes (Basel), 9, 1-11. https://doi.org/10.3390/membranes9100133.

N. Othman, H. Mat, M. Goto. (2006). Separation of silver from photographic wastes by emulsion liquid membrane system. J. Memb. Sci., 282, 171-177. https://doi.org/10.1016/j.memsci.2006.05.020.

N. Othman, M. Gato, H. Mat. (2004). Liquid membrane technology for precious metals recovery from industrial waste, In: Reg. Symp. Membr. Sci. Technol., 1-16.

B. Tang, G. Yu, J. Fang, T. Shi. (2010). Recovery of high-purity silver directly from dilute effluents by an emulsion liquid membrane-crystallization process. J. Hazard. Mater., 177, 377-383. https://doi.org/10.1016/j.jhazmat.2009.12.042.

B. Sengupta, M. S. Bhakhar, R. Sengupta. (2007). Extraction of copper from ammoniacal solutions into emulsion liquid membranes using LIX 84 I®. Hydrometallurgy, 89, 311-318. https://doi.org/10.1016/j.hydromet.2007.08.001.

Y. T. Mohamed, A. M. H. Ibrahim. (2012). Extraction of copper from waste solution using liquid emulsion membrane. J. Environ. Prot. (Irvine,. Calif), 3 129-134. https://doi.org/10.4236/jep.2012.31016.

M. Chiha, O. Hamdaoui, F. Ahmedchekkat, C. Pétrier. (2010). Study on ultrasonically assisted emulsification and recovery of copper(II) from wastewater using an emulsion liquid membrane process. Ultrason. Sonochem. 17, 318-325. https://doi.org/10.1016/j.ultsonch.2009.09.001.

H. M. Salman, A. A. Mohammed. (2021). Removal of copper ions from aqueous solution using liquid surfactant membrane technique. In: Colloids - Types, Prep. Appl., IntechOpen. 1-11. https://doi.org/10.5772/intechopen.95093.

S. Zereshki, A. Shokri, A. Karimi. (2021). Application of a green emulsion liquid membrane for removing copper from contaminated aqueous solution: Extraction, stability, and breakage study using response surface methodology. J. Mol. Liq., 325, 115251. https://doi.org/10.1016/j.molliq.2020.115251.

B. Sengupta, R. Sengupta, N. Subrahmanyam. (2006). Copper extraction into emulsion liquid membranes using LIX 984N-C®. Hydrometallurgy, 81, 67-73. https://doi.org/10.1016/j.hydrom et.2005.10.002.

R. Kumar, D. J. Shah, K. K. Tiwari. (2014). Extraction and enrichment of copper by liquid emulsion membrane using LIX 664N. J. Environ. Prot. (Irvine, Calif), 5, 1611-1617. https://doi.org/10.4236/jep.2014.517152.

B. Sengupta, R. Sengupta, N. Subrahmanyam. (2006). Process intensification of copper extraction using emulsion liquid membranes: Experimental search for optimal conditions. Hydrometallurgy, 84, 43-53. https://doi.org/10.1016/j.hydromet.2006.04.002.

N. Jusoh, N. Othman, A. Nasruddin. (2016). Emulsion liquid membrane technology in organic acid purification. Malaysian J. Anal. Sci., 20, 436-443.

W. Zhou, H. Liang, H. Xu. (2021). Recovery of gold from waste mobile phone circuit boards and synthesis of nanomaterials using emulsion liquid membrane. J. Hazard. Mater., 411. https://doi.org/10.1016/j.jhazmat.2020.125011.

Z. Lin, Z. Zhang, Y. Li, Y. Deng. (2016). Magnetic nano-Fe3O4 stabilized pickering emulsion liquid membrane for selective extraction and separation. Chem. Eng., J. 288, 305-311. https://doi.org/10.1016/j.cej.2015.11.109.

F. H. Al-Ani, Q. F. Alsalhy, M. Al-Dahhan. (2021). Enhancing emulsion liquid membrane system (ELM) stability and performance for the extraction of phenol from wastewater using various nanoparticles. Desalin. Water Treat., 210, 180-191. https://doi.org/10.5004/dwt.2021. 26547.

M. B. Rosly, N. Jusoh, N. Othman, H. A. Rahman, R. N. R. Sulaiman, N. F. M. Noah. (2020). Stability of emulsion liquid membrane using bifunctional diluent and blended nonionic surfactant for phenol removal. Chem. Eng. Process. - Process Intensif. 148, 1-14. https://doi.org/10.1016/j.cep.2019.107790.

S. Gupta, P. B. Khandale, M. Chakraborty. (2019). Application of emulsion liquid membrane for the extraction of diclofenac and relationship with the stability of water-in-Oil emulsions. J. Dispers. Sci. Technol., 41, 393-401. https://doi.org/10.1080/01932691.2019.1579655.

N. D. Zaulkiflee, A. L. Ahmad, J. Sugumaran, N. F. C. Lah. (2020). Stability study of emulsion liquid membrane via emulsion size and membrane breakage on acetaminophen removal from aqueous solution using TOA. ACS Omega, 5, 23892-23897. https://doi.org/10.1021/acsomega.0c03142.

N. Jusoh, N. Othman. (2016). Stability of water-in-oil emulsion in liquid membrane prospect. Malaysian J. Fundam. Appl. Sci., 12 114–116. https://doi.org/10.11113/mjfas.v12n3.429.

W. Peng, H. Jiao, H. Shi, C. Xu. (2012). The application of emulsion liquid membrane process and heat-induced demulsification for removal of pyridine from aqueous solutions. Desalination, 286, 372-378. https://doi.org/10.1016/j.desal.2011.11.051.

R. N. R. Sulaiman, N. Othman, N. A. S. Amin. (2014). Emulsion liquid membrane stability in the extraction of ionized nanosilver from wash water. J. Ind. Eng. Chem., 20, 3243-3250. https://doi.org/10.1016/j.jiec.2013.12.005.

R. A. Kumbasar. (2009). Extraction of chromium (VI) from multicomponent acidic solutions by emulsion liquid membranes using TOPO as extractant. J. Hazard. Mater., 167, 1141-1147. https://doi.org/10.1016/j.jhazmat.2009.01.113.

N. F. M. Noah, N. Othman, S. K. Bachok, N. A. Abdullah. (2015). Palladium extraction using emulsion liquid membrane process – stability study. Adv. Mater. Res., 1113, 376-381. https://doi.org/10.4028/www.scientific.net/amr.1113.376.

S. Datta, P. K. Bhattacharya, N. Verma. (2003). Removal of aniline from aqueous solution in a mixed flow reactor using emulsion liquid membrane. J. Memb. Sci., 226, 185-201. https://doi.org/10.1016/j.memsci.2003.09.003.

M. A. Hasan, Y. T. Selim, K. M. Mohamed. (2009). Removal of chromium from aqueous waste solution using liquid emulsion membrane. J. Hazard. Mater., 168, 1537-1541. https://doi.org/10.1016/j.jhazmat.2009.03.030.

P. Davoodi-Nasab, A. Rahbar-Kelishami, J. Safdari, H. Abolghasemi. (2018). Selective separation and enrichment of neodymium and gadolinium by emulsion liquid membrane using a novel extractant CYANEX® 572. Miner. Eng., 117, 63-73. https://doi.org/10.1016/j.mineng.2017.11.008.

Z. Hao, W. S. W. Ho. (2018). Supported liquid membranes in pharmaceutics and biotechnology. In: Curr. Trends Futur. Dev. Membr. Membr. Process. Pharm. Biotechnol. F., Elsevier Inc. 259-289. https://doi.org/10.1016/B978-0-12-813606-5.00009-9.

P. S. Kulkarni, K. K. Tiwari, V. V. Mahajani. (2000). Membrane stability and enrichment of nickel in the liquid emulsion membrane process. J. Chem. Technol. Biotechnol. 75, 553-560. https://doi.org/10.1002/1097-4660(200007)75:7<553::AID-JCTB252>3.0.CO;2-I.

N. F. M. Noah, N. Othman, N. Jusoh. (2016). Highly selective transport of palladium from electroplating wastewater using emulsion liquid membrane process. J. Taiwan Inst. Chem. Eng., 64, 134-141. https://doi.org/10.1016/j.jtice.2016.03.047.

R. K. Goyal, N. S. Jayakumar, M. A. Hashim. (2011). Chromium removal by emulsion liquid membrane using [BMIM]+[NTf2]- as stabilizer and TOMAC as extractant. Desalination, 278, 50-56. https://doi.org/10.1016/j.desal.2011.05.001.

R. Sabry, A. Hafez, M. Khedr, A. El-Hassanin. (2007). Removal of lead by an emulsion liquid membrane. Part I. Desalination, 212, 165-175. https://doi.org/10.1016/j.desal.2006.11.006.

M. A. Malik, M. A. Hashim, F. Nabi. (2012). Extraction of metal ions by ELM separation technology. J. Dispers. Sci. Technol., 33, 346-356. https://doi.org/10.1080/01932691.2011.567148.

Downloads

Published

2023-11-20

How to Cite

Kahar, I. N. S., Ali, A. S., Othman, N., Noah, N. F. M., & Suliman, S. S. (2023). Copper Extraction Using LIX 84 as a Mobile Carrier in the Emulsion Liquid Membrane Process. Journal of Applied Membrane Science & Technology, 27(3), 69–80. https://doi.org/10.11113/amst.v27n3.275

Issue

Section

Articles