Membrane Distillation for Desalination and Current Advances in MD Membranes

Authors

  • Monis Bin Abid ᵃDepartment of General Studies, University of Prince Mugrin Madinah Al Munawara, Saudi Arabia ᵃDepartment of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Roswanira Abdul Wahab Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
  • Lassaad Gzara Center of Excellence in Desalination Technology, King Abdulaziz University, PO Box 80200, Jeddah 21589, Saudi Arabia

DOI:

https://doi.org/10.11113/amst.v27n2.267

Keywords:

Desalination, Membrane distillation, membrane, biofouling, water efficacy

Abstract

Desalination is a great technique to address the growing demand for water because it is essential for humans. Water treatment and desalination are two common uses for the membrane-based, non-isothermal MD (Membrane Distillation) process. It works at low pressure and temperature, and heat from waste and solar energy can meet the process's heat requirements. In MD, dissolved salts and nonvolatile contaminants are rejected as the vapors go through the membrane's pores and start condensing at the permeate side. However, because to the lack of a suitable and adaptable membrane, biofouling, wetting and water efficacy are the main problems for MD. Many researchers have recently worked on membrane composites and attempted to create effective, appealing, and unique membranes for membrane distillation. This review article talks about water shortages in the 21st century, the rise of desalination, the use of membrane distillation (MD), recent developments in membrane distillations, developments in pilot scale MD technologies, New developments in membrane fabrication and modification, the desired properties of membranes, and desalination membranes.

References

h initiatives in the urban water sector? A social multi-criteria evaluation of non-conventional water alternatives in Metropolitan Barcelona. Journal of Cleaner Production, 38, 44-55.

Baldwin, C. and V. Uhlmann. (2010). Accountability in planning for sustainable water supplies in South East Queensland. Australian Planner. 47(3), 191-202.

Aviram, R., D. Katz, and D. Shmueli. (2014). Desalination as a game-changer in transboundary hydro-politics. Water Policy, 16(4), 609-624.

McEvoy, J. (2014). Desalination and water security: The promise and perils of a technological fix to the water crisis in Baja California Sur, Mexico. Water Alternatives, 7(3), 518-541.

McEvoy, J. and M. Wilder. (2012). Discourse and desalination: Potential impacts of proposed climate change adaptation interventions in the Arizona–Sonora border region. Global Environmental Change, 22(2), 353-363.

Intelligence, G. W. (2014). Desalination industry enjoys growth spurt as scarcity starts to bite. Water Online.

Schiffler, M. (2004). Perspectives and challenges for desalination in the 21st century. Desalination, 165, 1-9.

Hickenbottom, K. L., et al. (2013). Forward osmosis treatment of drilling mud and fracturing wastewater from oil and gas operations. Desalination, 312, 60-66.

Tal, A. (2011). The desalination debate—lessons learned thus far. Environment: Science and Policy for Sustainable Development. 53(5), 34-48.

Dreizin, Y., A. Tenne, and D. Hoffman. (2008). Integrating large scale seawater desalination plants within Israel’s water supply system. Desalination, 220(1-3), 132-149.

Swyngedouw, E. (2013). Into the sea: desalination as hydro-social fix in Spain. Annals of the Association of American Geographers, 103(2), 261-270.

Shengquan, Y., et al. (2008). Separation of carcinogenic aromatic amines in the food colourants plant wastewater treatment. Desalination, 222(1-3), 294-301.

Vickers, N. J. (2017). Animal communication: when i’m calling you, will you answer too? Current Biology, 27(14), R713-R715.

Mabrouk, A.-N. A., A. S. Nafey, and H. E. Fath. (2010). Steam, electricity and water costs evaluation of power desalination co-generation plants. Desalination and Water Treatment, 22(1-3), 56-64.

Zhou, Y. and R. S. Tol. (2005). Evaluating the costs of desalination and water transport. Water Resources Research, 41(3).

Roy, S. and S. Ragunath. (2018). Emerging membrane technologies for water and energy sustainability: Future prospects, constraints and challenges. Energies, 11(11), 2997.

Kesieme, U. K., et al. 2013. Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 323, 66-74.

Li, C., Y. Goswami, and E. Stefanakos. (2013). Solar assisted sea water desalination: A review. Renewable and Sustainable Energy Reviews, 19, 136-163.

Tzen, E. and M. Papapetrou. 2012. Promotion of renewable energy sources for water production through desalination. Desalination and Water Treatment, 39(1-3), 302-307.

Mezher, T., et al. (2011). Techno-economic assessment and environmental impacts of desalination technologies. Desalination, 266(1-3), 263-273.

Ghaffour, N., T. M. Missimer, and G. L. Amy. (2013). Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination, 309, 197-207.

Shannon, M. A., et al. (2010). Science and technology for water purification in the coming decades. Nanoscience and Technology: a Collection of Reviews from Nature Journals, 337-346.

Peñate, B. and L. García-Rodríguez. 2012. Current trends and future prospects in the design of seawater reverse osmosis desalination technology. Desalination, 284, 1-8.

Alkhudhiri, A., N. Darwish, and N. Hilal. (2012). Membrane distillation: A comprehensive review. Desalination, 287, 2-18.

Choi, Y., et al. (2019). Membrane distillation crystallization for brine mining and zero liquid discharge: opportunities, challenges, and recent progress. Environmental Science: Water Research & Technology, 5(7), 1202-1221.

Srisurichan, S., R. Jiraratananon, and A. Fane. (2006). Mass transfer mechanisms and transport resistances in direct contact membrane distillation process. Journal of Membrane Science, 277(1-2), 186-194.

Chernyshov, M. N., G. W. Meindersma, and A. B. de Haan. (2003). Modelling temperature and salt concentration distribution in membrane distillation feed channel. Desalination, 157(1-3), 315-324.

Al-Anezi, A. A.-H. (2013). Performance enhancement of air bubbling and vacuum membrane distillation for water desalination. University of Surrey.

Alanezi, A. A. and A. Sharif. (2012). Membrane distillation: an attractive alternative. Arab Water World, 36(5), 1-77.

Ibrahim, S. S. and Q. F. Alsalhy. (2013). Modeling and simulation for direct contact membrane distillation in hollow fiber modules. AIChE Journal, 59(2), 589-603.

Tomaszewska, M. (2000). Membrane distillation-examples of applications in technology and environmental protection. Polish Journal of Environmental Studies, 9(1), 27-36.

Alsaadi, A. S., et al. (2013). Modeling of air-gap membrane distillation process: A theoretical and experimental study. Journal of Membrane Science, 445, 53-65.

Onsekizoglu, P. (2012). Membrane distillation: principle, advances, limitations and future prospects in food industry. In Sina, Z. (Eds.). Distillation-Advances from Modeling to Applications. 282.

Boukhriss, M., K. Zhani, and H. B. Bacha. (2014). State of the art of various configurations of the membrane distillation unit for distilling the seawater. Int J Emerg Technol Adv Eng, 4(5), 340-57.

Jamed, M. J., A. Alhathal Alanezi, and Q. F. Alsalhy. (2019). Effects of embedding functionalized multi-walled carbon nanotubes and alumina on the direct contact poly (vinylidene fluoride-co-hexafluoropropylene) membrane distillation performance. Chemical Engineering Communications, 206(8), 1035-1057.

Ramlow, H., R. A. F. Machado, and C. Marangoni. (2017). Direct contact membrane distillation for textile wastewater treatment: a state of the art review. Water Science and Technology, 76(10), 2565-2579.

Mokhtar, N., et al. (2015). Membrane distillation technology for treatment of wastewater from rubber industry in Malaysia. Procedia Cirp, 26, 792-796.

Zakrzewska-Trznadel, G., M. Harasimowicz, and A. G. Chmielewski. (2001). Membrane processes in nuclear technology-application for liquid radioactive waste treatment. Separation and Purification Technology, 22, 617-625.

Walton, J., et al. (2004). Solar and waste heat desalination by membrane distillation. Desalination and Water Purification Research and Development Program Report, 81, 20.

Xie, Z., et al. (2009). Ammonia removal by sweep gas membrane distillation. Water Research, 43(6), 1693-1699.

Drioli, E., A. Ali, and F. Macedonio. (2015). Membrane distillation: Recent developments and perspectives. Desalination, 356, 56-84.

Kiss, A. A. and O. M. Kattan Readi. (2018). An industrial perspective on membrane distillation processes. Journal of Chemical Technology & Biotechnology, 93(8), 2047-2055.

Summers, E. K. and H. A. Arafat. (2012). Energy efficiency comparison of single-stage membrane distillation (MD) desalination cycles in different configurations. Desalination, 290, 54-66.

Susanto, H. (2011). Towards practical implementations of membrane distillation. Chemical Engineering and Processing: Process Intensification, 50(2), 139-150.

Hassan, A. S. and H. E. Fath. (2013). Review and assessment of the newly developed MD for desalination processes. Desalination and Water Treatment, 51(1-3), 574-585.

Aliyu, U. M., S. Rathilal, and Y. M. Isa. (2018). Membrane desalination technologies in water treatment: A review. Water Practice & Technology, 13(4), 738-752.

Abid, M. B., et al. (2023). Desalination technologies, membrane distillation, and electrospinning, an overview. Heliyon, e12810.

Winter, D., et al. (2017). Comparative analysis of full-scale membrane distillation contactors-methods and modules. Journal of Membrane Science, 524, 758-771.

Kennedy, M., et al. (2008). Water treatment by microfiltration and ultrafiltration. Advanced Membrane Technology and Applications, 131-170.

Chiam, C.-K. and R. Sarbatly. (2013). Vacuum membrane distillation processes for aqueous solution treatment—A review. Chemical Engineering and Processing: Process Intensification, 74, 27-54.

Laganà, F., G. Barbieri, and E. Drioli. (2000). Direct contact membrane distillation: modelling and concentration experiments. Journal of Membrane Science, 166(1), 1-11.

Fujii, Y., et al. (1992). Selectivity and characteristics of direct contact membrane distillation type experiment. I. Permeability and selectivity through dried hydrophobic fine porous membranes. Journal of Membrane Science, 72(1), 53-72.

He, Q., et al. (2014). Modeling and optimization of air gap membrane distillation system for desalination. Desalination, 354, 68-75.

Gryta, M. (2000). Concentration of saline wastewater from the production of heparin. Desalination, 129(1), 35-44.

Li, N. N., et al. (2011). Advanced membrane technology and applications. John Wiley & Sons.

Cerneaux, S., et al. (2009). Comparison of various membrane distillation methods for desalination using hydrophobic ceramic membranes. Journal of Membrane Science, 337(1-2), 55-60.

Pangarkar, B., et al. (2016). Review of membrane distillation process for water purification. Desalination and Water Treatment, 57(7), 2959-2981.

Babu, B. R., N. Rastogi, and K. Raghavara. (2008). Concentration and temperature polarization effects during osmotic membrane distillation. Journal of Membrane Science, 322(1), 146-153.

Francis, L., F. E. Ahmed, and N. Hilal. (2022). Advances in membrane distillation module configurations. Membranes, 12(1), 81.

Razaqpur, A. G., et al. (2021). Progress of photothermal membrane distillation for decentralized desalination: A review. Water Research, 201, 117299.

Burhan, M., et al. (2019). Performance investigation of MEMSYS vacuum membrane distillation system in single effect and multi-effect mode. Sustainable Energy Technologies and Assessments, 34, 9-15.

Zhao, K., et al. (2013). Experimental study of the memsys vacuum-multi-effect-membrane-distillation (V-MEMD) module. Desalination, 323, 150-160.

Andrés-Mañas, J., et al. (2018). Assessment of a pilot system for seawater desalination based on vacuum multi-effect membrane distillation with enhanced heat recovery. Desalination, 443, 110-121.

Wang, L., et al. (2022). Performance study of a passive vertical multiple-effect diffusion solar still directly heated by parabolic concentrator. Renewable Energy, 182, 855-866.

Cai, J., H. Yin, and F. Guo. (2020). Transport analysis of material gap membrane distillation desalination processes. Desalination, 481, 114361.

Ghaffour, N., A. Alsaadi, and L. Francis. (2017). Vacuumed gap membrane distillation (vagmed) module, multi-stage vagmed systems, and vagmed processes. Google Patents.

Kim, Y., et al. (2021). Powdered activated carbon (PAC)–vacuum-assisted air gap membrane distillation (V-AGMD) hybrid system to treat wastewater containing surfactants: Effect of operating conditions. Environmental Engineering Research, 26(5).

Naidu, G., et al. (2017). Transport phenomena and fouling in vacuum enhanced direct contact membrane distillation: Experimental and modelling. Separation and Purification Technology, 172, 285-295.

Francis, L., et al. (2015). Submerged membrane distillation for seawater desalination. Desalination and Water Treatment, 55(10), 2741-2746.

Alsaadi, A. S., et al. (2018). Flashed-feed VMD configuration as a novel method for eliminating temperature polarization effect and enhancing water vapor flux. Journal of Membrane Science, 563, 175-182.

Mustakeem, M., et al. (2021). Dead-end membrane distillation with localized interfacial heating for sustainable and energy-efficient desalination. Water Research, 189, 116584.

Dudchenko, A. V., et al. (2017). Frequency-dependent stability of CNT Joule heaters in ionizable media and desalination processes. Nature Nanotechnology, 12(6), 557-563.

Winter, D., J. Koschikowski, and M. Wieghaus. (2011). Desalination using membrane distillation: Experimental studies on full scale spiral wound modules. Journal of Membrane Science, 375(1-2), 104-112.

Essalhi, M. and M. Khayet. (2015). Membrane distillation (MD). Progress in Filtration and Separation. 61-99.

Chidambaran, R., et al. (2022). Method and apparatus for advanced vacuum membrane distillation. Google Patents.

Shin, Y., et al. (2017). Influence of operation conditions on the performance of pilot-scale vacuum membrane distillation (VMD). Desalin. Water Treat., 97, 1-7.

Kullab, A. and A. Martin. (2011). Membrane distillation and applications for water purification in thermal cogeneration plants. Separation and Purification Technology, 76(3), 231-237.

Zaragoza, G., A. Ruiz-Aguirre, and E. Guillén-Burrieza. (2014). Efficiency in the use of solar thermal energy of small membrane desalination systems for decentralized water production. Applied Energy, 130, 491-499.

Duong, H. C., et al. (2016). Evaluating energy consumption of air gap membrane distillation for seawater desalination at pilot scale level. Separation and Purification Technology, 166, 55-62.

Andrés-Mañas, J., et al. (2020). Performance increase of membrane distillation pilot scale modules operating in vacuum-enhanced air-gap configuration. Desalination, 475, 114202.

Mohamed, E. S., et al. (2017). Experimental evaluation of the performance and energy efficiency of a vacuum multi-effect membrane distillation system. Desalination, 408, 70-80.

Minier-Matar, J., et al. (2014). Field evaluation of membrane distillation technologies for desalination of highly saline brines. Desalination, 351, 101-108.

Dotremont, C., et al. (2010). Seawater desalination with memstill technology-a sustainable solution for the industry. Water Practice and Technology, 5(2).

Camacho, L. M., et al. (2013). Advances in membrane distillation for water desalination and purification applications. Water, 5(1), 94-196.

Thomas, N., et al. (2017). Membrane distillation research & implementation: Lessons from the past five decades. Separation and Purification Technology, 189, 108-127.

Tarnacki, K., et al. (2012). Environmental assessment of desalination processes: Reverse osmosis and Memstill®. Desalination, 296, 69-80.

Raluy, R.G., et al. (2012). Operational experience of a solar membrane distillation demonstration plant in Pozo Izquierdo-Gran Canaria Island (Spain). Desalination, 290, 1-13.

Adham, S., et al. (2013). Application of membrane distillation for desalting brines from thermal desalination plants. Desalination, 314, 101-108.

Ruiz-Aguirre, A., J. A. Andrés-Mañas, and G. Zaragoza. (2019). Evaluation of permeate quality in pilot scale membrane distillation systems. Membranes, 9(6), 69.

Schwantes, R., et al. (2018). Air gap membrane distillation for hypersaline brine concentration: Operational analysis of a full-scale module–New strategies for wetting mitigation. Desalination, 444, 13-25.

Minier-Matar, J., et al. (2016). Field evaluation of membrane distillation followed by humidification/dehumidification crystallizer for inland desalination of saline groundwater. Desalination, 398, 12-21.

Li, Y., et al. (2013). Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A, 1(35), 10058-10077.

Wang, P. and T.-S. Chung. (2015). Recent advances in membrane distillation processes: Membrane development, configuration design and application exploring. Journal of Membrane Science, 474, 39-56.

Wan Osman, W. N. A., et al. (2022). A review on recent progress in membrane distillation crystallization. ChemBioEng Reviews, 9(1), 93-109.

Yang, D. L., et al. (2022). Combination of 3D printing and electrospinning techniques for biofabrication. Advanced Materials Technologies, 7(7), 2101309.

De Mori, A., et al. (2018). 3D printing and electrospinning of composite hydrogels for cartilage and bone tissue engineering. Polymers, 10(3), 285.

Li, Y., et al. (2022). Review of advances in electrospinning-based strategies for spinal cord regeneration. Materials Today Chemistry, 24, 100944.

Al-Dhahebi, A. M., et al. Electrospinning research and products: The road and the way forward. Applied Physics Reviews, 9(1).

Guo, Y., et al. (2022). Research progress, models and simulation of electrospinning technology: A review. Journal of Materials Science, 1-47.

Francis, L., F. E. Ahmed, and N. Hila. (2022). Electrospun membranes for membrane distillation: The state of play and recent advances. Desalination, 526, 115511.

Li, J., et al. (2020). Fabrication of triple layer composite membrane and its application in membrane distillation (MD): Effect of hydrophobic-hydrophilic membrane structure on MD performance. Separation and Purification Technology, 234, 116087.

Khayet, M., et al. (2018). Dual-layered electrospun nanofibrous membranes for membrane distillation. Desalination, 426, 174-184.

Farahani, M. H. D. A., V. Vatanpour, and A. Taheri. (2020). Desalination: challenges and opportunities.

Gude, G. G. (2018). Emerging technologies for sustainable desalination handbook.

Wang, K., et al. (2018). Hydrophilic surface coating on hydrophobic PTFE membrane for robust anti-oil-fouling membrane distillation. Applied Surface Science, 450, 57-65.

Aljumaily, M. M., et al. (2022). The influence of coating super-hydrophobic carbon nanomaterials on the performance of membrane distillation. Applied Water Science, 12(3), 28.

Ravi, J., et al. (2020). Polymeric membranes for desalination using membrane distillation: A review. Desalination, 490, 114530.

Wei, X., et al. (2012). CF4 plasma surface modification of asymmetric hydrophilic polyethersulfone membranes for direct contact membrane distillation. Journal of Membrane Science, 407, 164-175.

González-Martínez, J. R., et al. (2023). Improved mechanical, optical, and electrical properties of chitosan films with the synergistic reinforcing effect of carbon nanotubes and reduced graphene oxide for potential optoelectronic applications.

Nitodas, S. F., M. Das, and R. Shah. (2022). Applications of polymeric membranes with carbon nanotubes: A review. Membranes, 12(5), 454.

Gupta, O., et al. (2022). Graphene oxide-carbon nanotube (GO-CNT) hybrid mixed matrix membrane for pervaporative dehydration of ethanol. Membranes, 12(12), 1227.

Liu, P., et al. (2020). Two-dimensional material membranes for critical separations. Inorganic Chemistry Frontiers, 7(13), 2560-2581.

Cai, J., et al. (2019). Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology. Composites Part A: Applied Science and Manufacturing, 121, 223-231.

Qtaishat, M., et al. (2009). Preparation and characterization of novel hydrophobic/hydrophilic polyetherimide composite membranes for desalination by direct contact membrane distillation. Journal of Membrane Science, 327(1-2), 264-273.

Kang, S. M., et al. (2010). One‐step modification of superhydrophobic surfaces by a mussel‐inspired polymer coating. Angewandte Chemie International Edition, 49(49), 9401-9404.

Rodrigues, M., et al. (2018). Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Science of the Total Environment, 633, 1549-1559.

Dikshit, A., et al. (2020). Rainfall induced landslide studies in Indian Himalayan region: A critical review. Applied Sciences, 10(7), 2466.

Cohen-Tanugi, D. and J. C. Grossman. (2012). Water desalination across nanoporous graphene. Nano Letters, 12(7), 3602-3608.

Alwatban, A. M. et al. (2019). Interaction of Wu’s slip features in bioconvection of Eyring Powell nanoparticles with activation energy. Processes, 7(11), 859.

Abd Aziz, M. H., et al. (2019). Fabrication and characterization of mullite ceramic hollow fiber membrane from natural occurring ball clay. Applied Clay Science, 177, 51-62.

Esfandiari, A., et al. (2019). Computational fluid dynamic modeling of water desalination using low-energy continuous direct contact membrane distillation process. Applied Thermal Engineering, 163, 114391.

Haris, N. I. N., et al. (2020). An overview of molecular dynamic simulation for corrosion inhibition of ferrous metals. Metals, 11(1), 46.

Hou, D., et al. (2012). Preparation and properties of PVDF composite hollow fiber membranes for desalination through direct contact membrane distillation. Journal of Membrane Science, 405, 185-200.

Rácz, G., et al. (2014). Theoretical and experimental approaches of liquid entry pressure determination in membrane distillation processes. Periodica Polytechnica Chemical Engineering, 58(2), 81-91.

Smolders, K. and A. Franken. (1989). Terminology for membrane distillation. Desalination, 72(3), 249-262.

Wang, Z., Y. Chen, and S. Lin. (2018). Kinetic model for surfactant-induced pore wetting in membrane distillation. Journal of Membrane Science, 564, 275-288.

Rezaei, M., et al. (2018). Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. Water Research, 139, 329-352.

García-Payo, M. d. C., M. A. Izquierdo-Gil, and C. Fernández-Pineda. (2000). Wetting study of hydrophobic membranes via liquid entry pressure measurements with aqueous alcohol solutions. Journal of Colloid and Interface Science, 230(2), 420-431.

Teoh, M. M. and T.-S. Chung. (2009). Membrane distillation with hydrophobic macrovoid-free PVDF–PTFE hollow fiber membranes. Separation and Purification Technology, 66(2), 229-236.

Shawky, H. A., et al. (2011). Synthesis and characterization of a carbon nanotube/polymer nanocomposite membrane for water treatment. Desalination, 272(1-3), 46-50.

Tang, Y., et al. (2012). Effect of spinning conditions on the structure and performance of hydrophobic PVDF hollow fiber membranes for membrane distillation. Desalination, 287, 326-339.

Schofield, R., A. Fane, and C. Fell. (1987). Heat and mass transfer in membrane distillation. Journal of membrane Science, 33(3), 299-313.

Phattaranawik, J., R. Jiraratananon, and A. Fane. (2003). Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. Journal of Membrane Science, 215(1-2), 75-85.

Khayet, M., K. Khulbe, and T. Matsuura. (2004). Characterization of membranes for membrane distillation by atomic force microscopy and estimation of their water vapor transfer coefficients in vacuum membrane distillation process. Journal of Membrane Science, 238(1-2), 199-211.

Elias-Kohav, T., S. Moshe, and D. Avnir. (1991). Steady-state diffusion and reactions in catalytic fractal porous media. Chemical Engineering Science, 46(11), 2787-2798.

Zhu, C., et al. (1999). Ultrasonic stimulation on enhancement of air gap membrane distillation. Journal of Membrane Science, 161(1-2), 85-93.

Schofield, R., A. Fane, and C. Fell. (1990). Gas and vapour transport through microporous membranes. II. Membrane distillation. Journal of Membrane Science, 53(1-2), 173-185.

Khayet, M., J. Mengual, and T. Matsuura. (2005). Porous hydrophobic/hydrophilic composite membranes: application in desalination using direct contact membrane distillation. Journal of Membrane Science, 252(1-2), 101-113.

El-Bourawi, M., et al. (2006). A framework for better understanding membrane distillation separation process. Journal of Membrane Science, 285(1-2), 4-29.

Banat, F. A. and J. Simandl. (1998). Desalination by membrane distillation: a parametric study.

Iversen, S., et al. (1997). Characterization of microporous membranes for use in membrane contactors. Journal of Membrane Science, 130(1-2), 205-217.

Khayet, M., M. Godino, and J. Mengual. (2003). Possibility of nuclear desalination through various membrane distillation configurations: a comparative study. International Journal of Nuclear Desalination, 1(1), 30-46.

Schofield, R., A. Fane, and C. Fell. (1990). Gas and vapour transport through microporous membranes. I. Knudsen-Poiseuille transition. Journal of Membrane Science, 53(1-2), 159-171.

Aljumaily, M. M., et al. (2018). PVDF-co-HFP/superhydrophobic acetylene-based nanocarbon hybrid membrane for seawater desalination via DCMD. Chemical Engineering Research and Design, 138, 248-259.

Bonyadi, S. and T. S. Chung. (2007). Flux enhancement in membrane distillation by fabrication of dual layer hydrophilic–hydrophobic hollow fiber membranes. Journal of Membrane Science, 306(1-2), 134-146.

García-Fernández, L., M. García-Payo, and M. Khayet. (2014). Effects of mixed solvents on the structural morphology and membrane distillation performance of PVDF-HFP hollow fiber membranes. Journal of Membrane Science, 468, 324-338.

Chang, J., et al. (2017). Using green solvent, triethyl phosphate (TEP), to fabricate highly porous PVDF hollow fiber membranes for membrane distillation. Journal of Membrane Science, 539, 295-304.

Silva, T. L., et al. (2015). Multi-walled carbon nanotube/PVDF blended membranes with sponge-and finger-like pores for direct contact membrane distillation. Desalination, 357, 233-245.

Velleman, L., J. Shapter, and D. Losic (2009). Gold nanotube membranes functionalised with fluorinated thiols for selective molecular transport. Journal of Membrane Science, 328(1-2), 121-126.

Eykens, L., et al. (2017). Membrane synthesis for membrane distillation: A review. Separation and Purification Technology, 182, 36-51.

Imdakm, A. and T. Matsuura. (2005). Simulation of heat and mass transfer in direct contact membrane distillation (MD): The effect of membrane physical properties. Journal of Membrane Science, 262(1-2), 117-128.

Al-Obaidani, S., et al. (2008). Potential of membrane distillation in seawater desalination: thermal efficiency, sensitivity study and cost estimation. Journal of Membrane Science, 323(1), 85-98.

Khayet, M. (2011). Membranes and theoretical modeling of membrane distillation: a review. Advances in Colloid and Interface Science, 164(1-2), 56-88.

Eykens, L., et al. (2016). How to optimize the membrane properties for membrane distillation: a review. Industrial & Engineering Chemistry Research, 55(35), 9333-9343.

Qasim, M., et al. (2021). Comprehensive review of membrane design and synthesis for membrane distillation. Desalination, 115168.

Tijing, L. D., et al. (2014). Recent progress of membrane distillation using electrospun nanofibrous membrane. Journal of Membrane Science,. 453, 435-462.

Yang, M.-Y., et al., Fabrication of low thermal conductivity yttrium silicate ceramic flat membrane for membrane distillation. Journal of the European Ceramic Society, 39(2-3), 442-448.

Pendergast, M. M. and E. M. Hoek. (2011). A review of water treatment membrane nanotechnologies. Energy & Environmental Science, 4(6), 1946-1971.

Bunch, J. S., et al. (2008). Impermeable atomic membranes from graphene sheets. Nano Letters, 8(8), 2458-2462.

Berry, V. (2013). Impermeability of graphene and its applications. Carbon, 62, 1-10.

O’Hern, S. C., et al. (2012). Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano, 6(11), 10130-10138.

Wang, E. N. and R. Karnik. (2012). Graphene cleans up water. Nature Nanotechnology, 7(9), 552-554.

Nicolaï, A., B. G. Sumpter, and V. Meunier. (2014). Tunable water desalination across graphene oxide framework membranes. Physical Chemistry Chemical Physics, 16(18), 8646-8654.

Lee, K. P., T. C. Arnot, and D. Mattia. (2011). A review of reverse osmosis membrane materials for desalination—Development to date and future potential. Journal of Membrane Science, 370(1-2), 1-22.

Mahmoud, K. A. et al. (2015). Functional graphene nanosheets: The next generation membranes for water desalination. Desalination, 356, 208-225.

Cohen-Tanugi, D. and J. C. Grossman. (2015). Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination, 366, 59-70.

Homaeigohar, S. and M. Elbahri. (2017). Graphene membranes for water desalination. NPG Asia Materials, 9(8), e427-e427.

O’Hern, S. C., et al. (2014). Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Letters, 14(3): 1234-1241.

Cohen-Tanugi, D., L.-C. Lin, and J. C. Grossman. (2016). Multilayer nanoporous graphene membranes for water desalination. Nano Letters, 16(2), 1027-1033.

Dikin, D. A., et al. (2007). Preparation and characterization of graphene oxide paper. Nature, 448(7152):. 457-460.

Kaneko, Y. (2018). Ionic silsesquioxanes: Preparation, structure control, characterization, and applications. Polymer, 144, 205-224.

Dreyer, D. R., et al. (2010). The chemistry of graphene oxide. Chemical Society Reviews, 39(1), 228-240.

An, D., et al. (2016). Separation performance of graphene oxide membrane in aqueous solution. Industrial & Engineering Chemistry Research, 55(17), 4803-4810.

Mi, B. (2014). Graphene oxide membranes for ionic and molecular sieving. Science, 343(6172), 740-742.

Nair, R., et al. (2012). Unimpeded permeation of water through helium-leak–tight graphene-based membranes. Science, 335(6067), 442-444.

Perreault, F., A. F. De Faria, and M. Elimelech. (2015). Environmental applications of graphene-based nanomaterials. Chemical Society Reviews, 44(16), 5861-5896.

Kaneko, Y. (2018). Ionic silsesquioxanes: Preparation, structure control, characterization, and applications. Polymer, 144, 205-224.

Gunji, T., et al. (2015). Preparation, properties, and structure of polysiloxanes by acid-catalyzed controlled hydrolytic co-polycondensation of polymethyl (methoxy) siloxane and polymethoxysiloxane. Journal of Sol-Gel Science and Technology, 75(3), 564-573.

Kim, K.-M. and Y. Chujo. (2003). Organic–inorganic hybrid gels having functionalized silsesquioxanes. Journal of Materials Chemistry, 13(6), 1384-1391.

Yamamoto, K. and J. Ohshita. (2019). Bridged polysilsesquioxane membranes for water desalination. Polymer Journal, 51(11), 1103-1116.

Lin, D.-R., et al. (2015). Mechanisms of competitive adsorption organic pollutants on hexylene-bridged polysilsesquioxane. Materials, 8(9), 5806-5817.

Loy, D. A. and K. J. Shea. (1995). Bridged polysilsesquioxanes. Highly porous hybrid organic-inorganic materials. Chemical Reviews, 95(5), 1431-1442.

Corriu, R. J., et al. (1992). New mixed organic-inorganic polymers: hydrolysis and polycondensation of bis (trimethoxysilyl) organometallic precursors. Chemistry of Materials, 4(6), 1217-1224.

Brigo, L., et al. (2016). Porous inorganic thin films from bridged silsesquioxane sol–gel precursors. Journal of Non-Crystalline Solids, 432, 399-405.

Zou, F., et al. (2016). Robust and superhydrophobic thiourethane bridged polysilsesquioxane aerogels as potential thermal insulation materials. Journal of Materials Chemistry A, 4(28), 10801-10805.

Castricum, H. L., et al. (2015). Hybrid silica membranes with enhanced hydrogen and CO2 separation properties. Journal of Membrane Science, 488, 121-128.

Castricum, H. L., et al. (2008). Hydrothermally stable molecular separation membranes from organically linked silica. Journal of Materials Chemistry, 18(18), 2150-2158.

Kanezashi, M., et al. (2009). Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability. Journal of the American Chemical Society, 131(2), 414-415.

Li, G., M. Kanezashi, and T. Tsuru (2011). Preparation of organic–inorganic hybrid silica membranes using organoalkoxysilanes: The effect of pendant groups. Journal Of Membrane Science, 379(1-2), 287-295.

Xu, R., et al. (2013). Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification. ACS Applied Materials & Interfaces, 5(13), 6147-6154.

Xu, R., et al. (2014). New insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges. ACS Applied Materials & Interfaces, 6(12), 9357-9364.

Xu, R., et al. (2016). Development of Ethenylene-bridged Organosilica Membranes for Desalination Applications. Industrial & Engineering Chemistry Research, 55(7), 2183-2190.

Agirre, I., et al. (2014). Hybrid organosilica membranes and processes: Status and outlook. Separation and Purification Technology, 121, 2-12.

Essalhi, M. and M. Khayet. (2014). Self-sustained webs of polyvinylidene fluoride electrospun nano-fibers: Effects of polymer concentration and desalination by direct contact membrane distillation. Journal of Membrane Science, 454, 133-143.

Yao, M., et al. (2016). Effect of heat-press conditions on electrospun membranes for desalination by direct contact membrane distillation. Desalination, 378, 80-91.

Lee, E.-J., et al. (2017). Advanced multi-nozzle electrospun functionalized titanium dioxide/polyvinylidene fluoride-co-hexafluoropropylene (TiO2/PVDF-HFP) composite membranes for direct contact membrane distillation. Journal of Membrane Science, 524, 712-720.

Dong, Z.-Q., et al. (2014). Superhydrophobic PVDF–PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination, 347, 175-183.

An, X., Z. Liu, and Y. Hu. (2018). Amphiphobic surface modification of electrospun nanofibrous membranes for anti-wetting performance in membrane distillation. Desalination, 432, 23-31.

Liao, Y., et al. (2014). Electrospun superhydrophobic membranes with unique structures for membrane distillation. ACS Applied Materials & Interfaces, 6(18), 16035-16048.

Liao, Y., R. Wang, and A. G. Fane, (2014). Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation. Environmental Science & Technology, 48(11), 6335-6341.

Subrahmanya, T., et al. (2021). A review of recent progress in polymeric electrospun nanofiber membranes in addressing safe water global issues. RSC Advances, 11(16), 9638-9663.

Lee, E.-J., et al. (2016). Electrospun nanofiber membranes incorporating fluorosilane-coated TiO2 nanocomposite for direct contact membrane distillation. Journal of Membrane Science, 520, 145-154.

Dong, Z.-Q., et al. (2015). FAS grafted electrospun poly (vinyl alcohol) nanofiber membranes with robust superhydrophobicity for membrane distillation. ACS Applied Materials & Interfaces, 7(40), 22652-22659.

Yang, F., et al. (2018). Metal–organic frameworks supported on nanofiber for desalination by direct contact membrane distillation. ACS Applied Materials & Interfaces, 10(13), 11251-11260.

An, A. K., et al. (2017). Enhanced vapor transport in membrane distillation via functionalized carbon nanotubes anchored into electrospun nanofibres. Scientific Reports, 7(1), 1-11.

Pan, C.-Y., et al. (2019). Electrospun nanofibrous membranes in membrane distillation: Recent developments and future perspectives. Separation and Purification Technology, 221, 44-63.

Guo, F., et al. (2015). Desalination by membrane distillation using electrospun polyamide fiber membranes with surface fluorination by chemical vapor deposition. ACS Applied Materials & Interfaces, 7(15), 8225-8232.

Woo, Y. C., et al. (2017). CF4 plasma-modified omniphobic electrospun nanofiber membrane for produced water brine treatment by membrane distillation. Journal of Membrane Science, 529, 234-242.

Woo, Y. C., et al. (2017). Electrospun dual-layer nonwoven membrane for desalination by air gap membrane distillation. Desalination, 403, 187-198.

Homaeigohar, S. and M. Elbahri. (2014). Nanocomposite electrospun nanofiber membranes for environmental remediation. Materials, 7(2), 1017-1045.

Khawaji, A. D., I. K. Kutubkhanah, and J.-M. Wie. (2006). Advances in seawater desalination technologies. Desalination, 221(1-3), 47-69.

Li, D. and H. Wang. (2010). Recent developments in reverse osmosis desalination membranes. Journal of Materials Chemistry, 20(22), 4551-4566.

Celebi, K., et al. (2014). Ultimate permeation across atomically thin porous graphene. Science, 344(6181), 289-292.

Surwade, S. P., et al. (2015). Water desalination using nanoporous single-layer graphene. Nature Nanotechnology, 10(5), 459-464.

Heiranian, M., A. B. Farimani, and N. R. Aluru (2015). Water desalination with a single-layer MoS 2 nanopore. Nature Communications, 6(1), 1-6.

Yang, Y., et al. (2016). Tunable C 2 N membrane for high efficient water desalination. Scientific Reports, 6(1), 1-6.

Zhou, W., et al. (2019). Fast desalination by multilayered covalent organic framework (COF) nanosheets. ACS Applied Materials & Interfaces, 11(18), 16847-16854.

Li, H., et al. (1999). Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 402(6759), 276-279.

Rodenas, T., et al. (2015). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55.

Hu, J., et al. (2010). Mixed-matrix membrane hollow fibers of Cu3 (BTC) 2 MOF and polyimide for gas separation and adsorption. Industrial & Engineering Chemistry Research, 49(24), 12605-12612.

Liu, X., et al. (2015). Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. Journal of the American Chemical Society, 137(22), 6999-7002.

Zhang, H., et al. (2018). Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Science Advances, 4(2), eaaq0066.

Gravelle, S., et al. (2013). Optimizing water permeability through the hourglass shape of aquaporins. Proceedings of the National Academy of Sciences, 110(41), 16367-16372.

Lahiri, N., et al. (2017). Hexaaminobenzene as a building block for a family of 2D coordination polymers. Journal of the American Chemical Society, 139(1), 19-22.

Feng, D., et al. (2018). Robust and conductive two-dimensional metal− organic frameworks with exceptionally high volumetric and areal capacitance. Nature Energy, 3(1), 30-36.

Zhao, M., et al. (2018). Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chemical Society Reviews, 47(16), 6267-6295.

Ashworth, D. J. and J. A. Foster. (2018). Metal–organic framework nanosheets (MONs): a new dimension in materials chemistry. Journal of Materials Chemistry A, 6(34), 16292-16307.

Cao, Z., V. Liu, and A. Barati Farimani. (2019). Water desalination with two-dimensional metal–organic framework membranes. Nano Letters, 19(12), 8638-8643.

Downloads

Published

2023-07-24

How to Cite

Bin Abid, M., Abdul Wahab , R., & Gzara, L. (2023). Membrane Distillation for Desalination and Current Advances in MD Membranes. Journal of Applied Membrane Science & Technology, 27(2), 39–88. https://doi.org/10.11113/amst.v27n2.267

Issue

Section

Articles