Removal of Antibiotics from Wastewaters by Carbon Nanotube Filtration Membrane: A Review
DOI:
https://doi.org/10.11113/amst.v27n2.266Keywords:
Carbon nanotube, membrane, antibiotics, wastewater, removalAbstract
Water pollution by antibiotics is a global challenge requiring an affordable, readily available, efficient solution. Therefore, this review evaluates the role of carbon nanotube (CNT) based filtration membrane as an efficient solution to provide clean water free of antibiotic residues. The study considered the preparation of CNTs and CNT filtration membranes and their performance towards removing antibiotics from water. The study revealed that there are several methods for the preparation of CNTs, among which the chemical vapour deposition (CVD) is commonly used. It further revealed that three types of CNT-based membranes exist, which are vertically aligned (VA-CNT), bucky paper CNTs (BP-CNT) and CNT-based composite (CNT-CPS). Despite the high performance demonstrated by the membranes, there is a need to evaluate the cost-effectiveness, safety, and regeneration of the membranes. More studies are also required on a large scale to understand the behaviour of the membranes in the purification of ample water supply and the effect of interference from other co-pollutants in water in the real-life polluted water matrix. The study showed that CNT-based filtration membranes are promising membranes for the future, with reliable properties for effectively purifying contaminated water.
References
Al-Odaini, N. A., Zakaria, M. P., Yaziz, M. I., Surif, S., Abdulghani, M. (2013). The occurrence of human pharmaceuticals in wastewater effluents and surface water of Langat River and its tributaries, Malaysia. International Journal of Environmental Analytical Chemistry, 93(3), 245-64.
Ying, G-G., He, L-Y., Ying, A. J., Zhang, Q-Q., Liu, Y-S., Zhao, J-L. (2017). China must reduce its antibiotic use. Environ. Sci. Technol, 51(3), 107-1073.
Le, T-H., Ng, C., Tran, N. H., Chen, H., Gin, KY-H. (2018). Removal of antibiotic residues, antibiotic resistant bacteria and antibiotic resistance genes in municipal wastewater by membrane bioreactor systems. Water Research, 145, 498-508.
Ekwanzala, M. D., Lehutso, R. F., Kasonga, T. K., Dewar, J. B., Momba, M. N. B. (2020). Environmental dissemination of selected antibiotics from hospital wastewater to the aquatic environment. Antibiotics, 9(7), 431.
Patel, M., Kumar, R., Kishor, K., Mlsna, T., Pittman, Jr C. U., Mohan, D. (2019). Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chemical Reviews, 119(6), 3510-673.
Gaálová, J., Bourassi, M., Soukup, K., et al. (2021). Modified single-walled carbon nanotube membranes for the elimination of antibiotics from water. Membranes, 11(9), 720.
Browne, A. J., Chipeta, M. G., Haines-Woodhouse, G., et al. (2021). Global antibiotic consumption and usage in humans, 2000–18: a spatial modelling study. The Lancet Planetary Health, 5(12), e893-e904.
Madikizela, L. M., Tavengwa, N. T., Chimuka, L. (2017). Status of pharmaceuticals in African water bodies: Occurrence, removal and analytical methods. Journal of Environmental Management, 193, 211-20.
Azanu, D., Styrishave, B., Darko, G., Weisser, J. J., Abaidoo, R. C. (2018). Occurrence and risk assessment of antibiotics in water and lettuce in Ghana. Science of the Total Environment, 622, 293-305.
K'oreje, K. O., Demeestere, K., De Wispelaere, P., Vergeynst, L., Dewulf, J., Van Langenhove, H. (2012). From multi-residue screening to target analysis of pharmaceuticals in water: development of a new approach based on magnetic sector mass spectrometry and application in the Nairobi River basin. Kenya. Science of the Total Environment, 437, 153-64.
Archundia, D., Duwig, C., Lehembre, F., et al. (2017). Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products and occurrence of resistance genes. Science of the Total Environment, 576, 671-82.
Locatelli, M. A. F., Sodré, F. F., Jardim, W. F. (2011). Determination of antibiotics in Brazilian surface waters using liquid chromatography–electrospray tandem mass spectrometry. Archives of Environmental Contamination and Toxicology, 60, 385-93.
Kleywegt, S., Pileggi, V., Yang, P., et al. (2011). Pharmaceuticals, hormones and bisphenol A in untreated source and finished drinking water in Ontario, Canada—occurrence and treatment efficiency. Science of the Total Environment, 409(8), 1481-8.
Cha, J., Yang, S., Carlson, K. (2006). Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. Journal of Chromatography A, 1115(1-2), 46-57.
Mirzaei, R., Yunesian, M., Nasseri, S., et al. (2018). Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Science of the Total Environment, 619, 446-59.
Aus der Beek, T., Weber, F. A., Bergmann, A., et al. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823-35.
Murata, A., Takada, H., Mutoh, K., Hosoda, H., Harada, A., Nakada, N. (2011). Nationwide monitoring of selected antibiotics: distribution and sources of sulfonamides, trimethoprim, and macrolides in Japanese rivers. Science of the Total Environment, 409(24), 5305-12.
Bielen, A., Šimatović, A., Kosić-Vukšić, J., et al. (2017). Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. Water Research, 126, 79-87.
Rodriguez-Mozaz, S., Chamorro, S., Marti, E., et al. (2015). Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69, 234-42.
Dinh, Q. T., Alliot, F., Moreau-Guigon, E., Eurin, J., Chevreuil, M., Labadie, P. (2011). Measurement of trace levels of antibiotics in river water using on-line enrichment and triple-quadrupole LC–MS/MS. Talanta, 85(3), 1238-45.
Watkinson, A., Murby, E., Costanzo, S. (2007). Removal of antibiotics in conventional and advanced wastewater treatment: implications for environmental discharge and wastewater recycling. Water Research, 41(18), 4164-76.
Khan, N. A., Ahmed, S., Farooqi, I. H., et al. (2020). Occurrence, sources and conventional treatment techniques for various antibiotics present in hospital wastewaters: a critical review. TrAC Trends in Analytical Chemistry, 129, 115921.
Wang, J., Chu, L., Wojnárovits, L., Takács, E. (2020). Occurrence and fate of antibiotics, antibiotic resistant genes (ARGs) and antibiotic resistant bacteria (ARB) in municipal wastewater treatment plant: An overview. Science of the Total Environment, 744, 140997.
Mukherjee, M., Laird, E., Gentry, T. J., Brooks, J. P., Karthikeyan, R. (2021). Increased antimicrobial and multidrug resistance downstream of wastewater treatment plants in an urban watershed. Frontiers in Microbiology. 12, 657353.
Gaur, N., Dutta, D., Singh, A., Dubey, R., Kamboj, D. V. (2022). Recent advances in the elimination of persistent organic pollutants by photocatalysis. Frontiers in Environmental Science, 10, 2076.
Yang, Y., Banerjee, G., Brudvig, G. W., Kim, J-H., Pignatello, J. J. (2018). Oxidation of organic compounds in water by unactivated peroxymonosulfate. Environmental Science & Technology, 52(10), 5911-9.
Jiang, Y., Zhao, H., Liang, J., et al. (2021). Anodic oxidation for the degradation of organic pollutants: anode materials, operating conditions and mechanisms. A mini review. Electrochemistry Communications, 123, 106912.
Loganathan, P., Kandasamy, J., Ratnaweera, H., Vigneswaran, S. (2022). Submerged membrane/adsorption hybrid process in water reclamation and concentrate management—a mini review. Environmental Science and Pollution Research, 1-15.
Chabalala, M. B., Gumbi, N. N., Mamba, B. B., Al-Abri, M. Z., Nxumalo, E. N. (2021). Photocatalytic nanofiber membranes for the degradation of micropollutants and their antimicrobial activity: recent advances and future prospects. Membranes, 11(9), 678.
Liu, X., Ren, Z., Ngo, H. H., He, X., Desmond, P., Ding, A. (2021). Membrane technology for rainwater treatment and reuse: A mini review. Water Cycle, 2, 51-63.
Ying, Y., Ying, W., Li, Q., et al. (2017). Recent advances of nanomaterial-based membrane for water purification. Applied Materials Today, 7, 144-58.
Goh, P., Ismail, A. (2018). A review on inorganic membranes for desalination and wastewater treatment. Desalination, 434, 60-80.
Wang, J., Liu, H., Chen, X., et al. (2022). Performance and mechanism of removal of antibiotics and antibiotic resistance genes from wastewater by electrochemical carbon nanotube membranes. Frontiers in Chemistry, 10.
Jhaveri, J. H., Murthy, Z. (2016). A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination, 379, 137-54.
Miller, D. J., Dreyer, D. R., Bielawski, C. W., Paul, D. R., Freeman, B. D. (2017). Surface modification of water purification membranes. Angewandte Chemie International Edition, 56(17), 4662-711.
Żyłła, R., Boruta, T., Gmurek, M., Milala, R., Ledakowicz, S. (2019). Integration of advanced oxidation and membrane filtration for removal of micropollutants of emerging concern. Process Safety and Environmental Protection, 130, 67-76.
Othman, N. H., Alias, N. H., Fuzil, N. S., et al. (2021). A review on the use of membrane technology systems in developing countries. Membranes, 12(1) 30.
Wang, Y., Huang, H., Wei, X. (2018). Influence of wastewater precoagulation on adsorptive filtration of pharmaceutical and personal care products by carbon nanotube membranes. Chemical Engineering Journal, 333, 66-75.
Sun, M., Cui, M., Wang, Y., Fan, X., Song, C. (2020). Enhanced permeability and removal efficiency for phenol and perfluorooctane sulphonate by a multifunctional CNT/Al2O3 membrane with electrochemical assistance. Journal of Nanoscience and Nanotechnology, 20(9), 5951-8.
Wang, Y., Zhu, J., Huang, H., Cho, H-H. (2015). Carbon nanotube composite membranes for microfiltration of pharmaceuticals and personal care products: Capabilities and potential mechanisms. Journal of Membrane Science, 479, 165-74.
Wu, H., Niu, X., Yang, J., Wang, C., Lu, M. (2016). Retentions of bisphenol A and norfloxacin by three different ultrafiltration membranes in regard to drinking water treatment. Chemical Engineering Journal, 294, 410-6.
Pan, Z., Song, C., Li, L., et al. (2019). Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects. Chemical Engineering Journal, 376, 120909.
Chowdhury, Z. Z., Sagadevan, S., Johan, R. B., et al. (2018). A review on electrochemically modified carbon nanotubes (CNTs) membrane for desalination and purification of water. Materials Research Express, 5(10), 102001.
Tan, T-Y., Zeng, Z-T., Zeng, G-M., et al. (2020). Electrochemically enhanced simultaneous degradation of sulfamethoxazole, ciprofloxacin and amoxicillin from aqueous solution by multi-walled carbon nanotube filter. Separation and Purification Technology, 235, 116167.
Liu, H., Vecitis, C. D. (2012). Reactive transport mechanism for organic oxidation during electrochemical filtration: mass-transfer, physical adsorption, and electron-transfer. The Journal of Physical Chemistry C, 116(1), 374-83.
Akter, M., R. F., Aloufi, F. A., Taleb, M. A., Akter, S., Mahmood, S. (2022). Utilization of agro-industrial wastes for the production of quality oyster mushrooms. Sustainability, 14(2), 994.
Ndlwana, L., Raleie, N., Dimpe, K. M., et al. (2021). Sustainable hydrothermal and solvothermal synthesis of advanced carbon materials in multidimensional applications: A review. Materials, 14(17), 5094.
Aabir, A., Naz, M. Y., Shukrullah, S. (2022). Synthesis of Carbon Nanotubes via Plasma Arc Discharge Method. Emerging Developments and Applications of Low Temperature Plasma, IGI Global. 85-102.
Hou, P. X., Zhang, F., Zhang, L., Liu, C., Cheng, H. M. (2022). Synthesis of carbon nanotubes by floating catalyst chemical vapor deposition and their applications. Advanced Functional Materials, 32(11), 2108541.
Novoselova, I., Oliinyk, N., Volkov, S., et al. (2008). Electrolytic synthesis of carbon nanotubes from carbon dioxide in molten salts and their characterization. Physica E: Low-dimensional Systems and Nanostructures, 40(7), 2231-7.
Kumar, R., Kumar, V. B., Gedanken, A. (2020). Sonochemical synthesis of carbon dots, mechanism, effect of parameters, and catalytic, energy, biomedical and tissue engineering applications. Ultrasonics Sonochemistry, 64, 105009.
Eskandari, M. J., Araghchi, M., Daneshmand, H. (2022). Aluminum oxide nanotubes fabricated via laser ablation process: Application as superhydrophobic surfaces. Optics & Laser Technology, 155, 108420.
Singla, D. K., Murtaza, Q. (2015). CNT reinforced aluminium matrix composite-a review. Materials Today: Proceedings, 2(4-5), 2886-95.
Ikegami, T., Nakanishi, F., Uchiyama, M., Ebihara, K. (2004). Optical measurement in carbon nanotubes formation by pulsed laser ablation. Thin Solid Films, 457(1), 7-11.
Prasek, J., Drbohlavova, J., Chomoucka, J., et al. (2011). Methods for carbon nanotubes synthesis. Journal of Materials Chemistry, 21(40), 15872-84.
Anzar, N., Hasan, R., Tyagi, M., Yadav, N., Narang, J. (2020). Carbon nanotube-A review on Synthesis, Properties and plethora of applications in the field of biomedical science. Sensors International, 1, 100003.
Yahyazadeh, A., Khoshandam, B. (2017). Carbon nanotube synthesis via the catalytic chemical vapor deposition of methane in the presence of iron, molybdenum, and iron–molybdenum alloy thin layer catalysts. Results in Physics, 7, 3826-37.
Hynes, N. R. J., Sankaranarayanan, R., Kathiresan, M., et al. (2019). Synthesis, properties, and characterization of carbon nanotube-reinforced metal matrix composites. Nanocarbon and its Composites. Elsevier. 805-30.
Ghoranneviss, M., Javid, A., Moattar, F., Moradi, A. M., Saeedi, P. (2014). Growth of carbon nanotubes on silicon substrate and nickel catalyst by thermal CVD using ethanol. Bulletin of Environment, Pharmacology and Life Sciences, 3(2), 47-52.
Pérez-Mendoza, M., Vallés, C., Maser, W., Martínez, M., Benito, A. (2005). Influence of molybdenum on the chemical vapour deposition production of carbon nanotubes. Nanotechnology, 16(5), S224.
Chen, G., Davis, R. C., Kimura, H., et al. (2015). The relationship between the growth rate and the lifetime in carbon nanotube synthesis. Nanoscale, 7(19), 8873-8.
Zhao, Y., Choi, J., Kim, P., Fei, W., Lee, C. J. (2015). Large-scale synthesis and characterization of super-bundle single-walled carbon nanotubes by water-assisted chemical vapor deposition. RSC Advances, 5(39), 30564-9.
Chrzanowska, J., Hoffman, J., Małolepszy, A., et al. (2015). Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Physica Status Solidi, 252(8), 1860-7.
AlMalki, F. A., Khashan, K. S., Jabir, M. S., et al. (2022). Eco-friendly synthesis of carbon nanoparticles by laser ablation in water and evaluation of their antibacterial activity. Journal of Nanomaterials, 2022, 1-8.
Escobar-Alarcón, L., Espinosa-Pesqueira, M. E., Solis-Casados, D. A., et al. (2018). Two-dimensional carbon nanostructures obtained by laser ablation in liquid: effect of an ultrasonic field. Applied Physics A, 124, 1-7.
Ganash, E. A., Al-Jabarti, G. A., Altuwirqi, R. M. (2019). The synthesis of carbon-based nanomaterials by pulsed laser ablation in water. Materials Research Express, 7(1), 015002.
Tarasenka, N., Stupak, A., Tarasenko, N., Chakrabarti, S., Mariotti, D. (2017). Structure and optical properties of carbon nanoparticles generated by laser treatment of graphite in liquids. Chem Phys. Chem., 18(9), 1074-83.
Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., Amaratunga, G. A. (2001). Synthesis of carbon'onions' in water. Nature, 414(6863), 506-7.
Imasaka, K., Kanatake, Y., Ohshiro, Y., Suehiro, J., Hara, M. (2006). Production of carbon nanoonions and nanotubes using an intermittent arc discharge in water. Thin Solid Films. 506, 250-4.
Belgacem, A. B., Hinkov, I., Yahia, S. B., Brinza, O., Farhat, S. (2016). Arc discharge boron nitrogen doping of carbon nanotubes. Materials Today Communications, 8, 183-95.
Berkmans, J., Jagannatham, M., Reddy, R., Haridoss, P. (2015). Synthesis of thin bundled single walled carbon nanotubes and nanohorn hybrids by arc discharge technique in open air atmosphere. Diamond and Related Materials, 55, 12-5.
Su, Y., Zhang, Y. (2015). Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon, 83, 90-9.
Ferreira, F. V., Franceschi, W., Menezes, B. R., Biagioni, A. F., Coutinho, A. R., Cividanes, L. S. (2019). Synthesis, characterization, and applications of carbon nanotubes. Carbon-based nanofillers and their rubber nanocomposites. Elsevier. 1-45.
Mohammad, M., Moosa, A. A., Potgieter, J., Ismael, M. K. (2013) Carbon nanotubes synthesis via arc discharge with a Yttria catalyst. International Scholarly Research Notices. 2013.
Chaudhary, K., Rizvi, Z., Bhatti, K., Ali, J., Yupapin, P. (2013) Multiwalled carbon nanotube synthesis using arc discharge with hydrocarbon as feedstock. Journal of Nanomaterials, 2013, 145.
Tepale-Cortés, A., Moreno-Saavedra, H., Hernandez-Tenorio, C., Rojas-Ramírez, T., Illescas, J. (2021). Multi-walled carbon nanotubes synthesis by arc discharge method in a glass chamber. Journal of the Mexican Chemical Society, 65(4), 480-90.
Gogotsi, Y., Libera, J. A., Yoshimura, M. (2000). Hydrothermal synthesis of multiwall carbon nanotubes. Journal of Materials Research, 15(12), 2591-4.
Everhart, B. M., Baker-Fales, M., McAuley, B., et al. (2020). Hydrothermal synthesis of carbon nanotube–titania composites for enhanced photocatalytic performance. Journal of Materials Research, 35(11), 1451-60.
Sedira, S., Mendaci, B. (2020). Hydrothermal synthesis of spherical carbon nanoparticles (CNPs) for supercapacitor electrodes uses. Materials for Renewable and Sustainable Energy, 9(1), 1.
J. B. M. (2022). A comparative study of carbon nanotube characteristics synthesized from various biomass precursors through hydrothermal techniques and their potential applications. Chemical Engineering Communications, 209(1), 127-39.
Liu, X., Licht, G., Wang, X., Licht, S. (2022). Controlled transition metal nucleated growth of carbon nanotubes by molten electrolysis of CO2. Catalysts, 12(2), 137.
Barrejón, M., Prato, M. (2022). Carbon nanotube membranes in water treatment applications. Advanced Materials Interfaces, 9(1), 2101260.
Rizzuto, C., Pugliese, G., Bahattab, M. A., Aljlil, S. A., Drioli, E., Tocci, E. (2018). Multiwalled carbon nanotube membranes for water purification. Separation and Purification Technology, 193, 378-85.
Jue, M. L., Buchsbaum, S. F., Chen, C., et al. (2020). Ultra‐permeable single‐walled carbon nanotube membranes with exceptional performance at scale. Advanced Science, 7(24), 2001670.
Li, C., Yang, J., Zhang, L., et al. (2021). Carbon-based membrane materials and applications in water and wastewater treatment: A review. Environmental Chemistry Letters, 19, 1457-75.
Rashed, A. O., Merenda, A., Kondo, T., et al. (2021). Carbon nanotube membranes–Strategies and challenges towards scalable manufacturing and practical separation applications. Separation and Purification Technology, 257, 117929.
Shi, W., Plata, D. L. (2018). Vertically aligned carbon nanotubes: Production and applications for environmental sustainability. Green Chemistry, 20(23), 5245-60.
Li, S., Liao, G., Liu, Z., et al. (2014). Enhanced water flux in vertically aligned carbon nanotube arrays and polyethersulfone composite membranes. Journal of Materials Chemistry A, 2(31), 12171-6.
Trivedi, S., Alameh, K. (2016). Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes. SpringerPlus. 5, 1158.
Sharma, P., Pavelyev, V., Kumar, S., Mishra, P., Islam, S., Tripathi, N. (2020). Analysis on the synthesis of vertically aligned carbon nanotubes: growth mechanism and techniques. Journal of Materials Science: Materials in Electronics, 31, 4399-443.
Lee, J. H., Kim, H-S., Yun, E-T., et al. (2020). Vertically aligned carbon nanotube membranes: Water purification and beyond. Membranes, 10(10), 273.
Chen, M., Chen, C-M., Shi, S-C., Chen, C-F. (2003). Low-temperature synthesis multiwalled carbon nanotubes by microwave plasma chemical vapor deposition using CH4–CO2 gas mixture. Japanese Journal of Applied Physics, 42(2R), 614.
Chen, M., Chen, C-M., Chen, C-F. (2002). Preparation of high yield multi-walled carbon nanotubes by microwave plasma chemical vapor deposition at low temperature. Journal of Materials Science, 37, 3561-7.
Azami, H., Omidkhah, M. R. (2020). Vertically aligned carbon nanotube membrane: synthesis, characterization and application in salt water desalination. Advances in Environmental Technology, 6(3), 173-89.
Ahn, S., Nara, H., Yokoshima, T., Momma, T., Osaka, T. (2019). Effect of enhanced structural stability of Si-OC anode by carbon nanotubes for lithium-ion battery. Materials Letters, 245, 200-3.
Nessim, G. D., Hart, A. J., Kim, J. S., et al. (2008). Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nano Letters, 8(11), 3587-93.
Burt, D. P., Whyte, W. M., Weaver, J. M., et al. (2009). Effects of metal underlayer grain size on carbon nanotube growth. The Journal of Physical Chemistry C, 113(34), 15133-9.
Youn, S. K., Frouzakis, C. E., Gopi, B. P., Robertson, J,. Teo, K. B., Park, H. G. (2013). Temperature gradient chemical vapor deposition of vertically aligned carbon nanotubes. Carbon, 54, 343-52.
Li, Y., Xu, G., Zhang, H., et al. (2015). Alcohol-assisted rapid growth of vertically aligned carbon nanotube arrays. Carbon, 91, 45-55.
Sugime, H., Noda, S. (2012). Cold-gas chemical vapor deposition to identify the key precursor for rapidly growing vertically-aligned single-wall and few-wall carbon nanotubes from pyrolyzed ethanol. Carbon, 50(8), 2953-60.
Christen, H., Puretzky, A., Cui, H., et al. (2004). Rapid growth of long, vertically aligned carbon nanotubes through efficient catalyst optimization using metal film gradients. Nano Letters, 4(10), 1939-42.
Saurakhiya, N., Zhu, Y., Cheong, F., et al. (2005). Pulsed laser deposition-assisted patterning of aligned carbon nanotubes modified by focused laser beam for efficient field emission. Carbon, 43(10), 2128-33.
Ren, Z., Huang, Z., Xu, J., et al. (1998). Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science, 282(5391), 1105-7.
Xu, Y-Q., Flor, E., Schmidt, H., Smalley, R. E., Hauge, R. H. (2006). Effects of atomic hydrogen and active carbon species in 1 mm vertically aligned single-walled carbon nanotube growth. Applied Physics Letters, 89(12), 123116.
Wang, H., Moore, J. J. (2010). Different growth mechanisms of vertical carbon nanotubes by rf-or dc-plasma enhanced chemical vapor deposition at low temperature. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 28(6), 1081-5.
Wang, H., Moore, J. J. (2012). Low temperature growth mechanisms of vertically aligned carbon nanofibers and nanotubes by radio frequency-plasma enhanced chemical vapor deposition. Carbon, 50(3), 1235-42.
Hou, B., Wu, C., Inoue, T., Chiashi, S., Xiang, R., Maruyama, S. (2017). Extended alcohol catalytic chemical vapor deposition for efficient growth of single-walled carbon nanotubes thinner than (6, 5). Carbon, 119, 502-10.
Fujii, T., Kiribayashi, H., Saida, T., Naritsuka, S., Maruyama, T. (2017). Low temperature growth of single-walled carbon nanotubes from Ru catalysts by alcohol catalytic chemical vapor deposition. Diamond and Related Materials, 77, 97-101.
Maruyama, T., Kondo, H., Ghosh, R., et al. (2016). Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum. Carbon, 96, 6-13.
Cui, K., Kumamoto, A., Xiang, R., et al. (2016). Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts. Nanoscale, 8(3), 1608-17.
Xiang, R., Einarsson, E., Okawa, J., Miyauchi, Y., Maruyama, S. (2009). Acetylene-accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single-walled carbon nanotubes. The Journal of Physical Chemistry C, 113(18), 7511-5.
Bower, C., Zhu, W., Jin, S., Zhou, O. (2000). Plasma-induced alignment of carbon nanotubes. Applied Physics Letters, 77(6), 830-2.
Choi, Y. C., Shin, Y. M., Lee, Y. H., et al. (2000). Controlling the diameter, growth rate, and density of vertically aligned carbon nanotubes synthesized by microwave plasma-enhanced chemical vapor deposition. Applied Physics Letters, 76(17), 2367-9.
Chen, L-C., Wen, C-Y., Liang, C-H., et al. (2002). Controlling steps during early stages of the aligned growth of carbon nanotubes using microwave plasma enhanced chemical vapor deposition. Advanced Functional Materials, 12(10), 687-92.
Yamada, T., Namai, T., Hata, K., et al. (2006). Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nature Nanotechnology, 1(2), 131-6.
Aldalbahi, A., in het Panhuis, M. (2012). Electrical and mechanical characteristics of buckypapers and evaporative cast films prepared using single and multi-walled carbon nanotubes and the biopolymer carrageenan. Carbon, 50(3), 1197-208.
Wang, S., Haldane, D., Liang, R., Smithyman, J., Zhang, C., Wang, B. (2012). Nanoscale infiltration behaviour and through-thickness permeability of carbon nanotube buckypapers. Nanotechnology, 24(1), 015704.
Ribeiro, B., Botelho, E. C., Costa, M. L., Bandeira, C. F. (2017). Carbon nanotube buckypaper reinforced polymer composites: a review. Polímeros, 27, 247-55.
Lima, A. M., Castro, VGd, Borges, R. S., Silva, G. G. (2012). Electrical conductivity and thermal properties of functionalized carbon nanotubes/polyurethane composites. Polímeros, 22, 117-24.
Chapartegui, M., Barcena, J., Irastorza, X., Elizetxea, C., Fernandez, M., Santamaria, A. (2012). Analysis of the conditions to manufacture a MWCNT buckypaper/benzoxazine nanocomposite. Composites Science and Technology, 72(4), 489-97.
Che, J., Chen, P., Chan-Park, M. B. (2013). High-strength carbon nanotube buckypaper composites as applied to free-standing electrodes for supercapacitors. Journal of Materials Chemistry A, 1(12), 4057-66.
Wang, X., Lu, S., Ma, K., Xiong, X., Zhang, H., Xu, M. (2015). Tensile strain sensing of buckypaper and buckypaper composites. Materials & Design, 88, 414-9.
Steiner, S., Busato, S., Ermanni, P. (2012). Mechanical properties and morphology of papers prepared from single-walled carbon nanotubes functionalized with aromatic amides. Carbon, 50(5), 1713-9.
Berned-Samatán, V., Rubio, C., Galán-González, A, et al. (2022). Single-walled carbon nanotube buckypaper as support for highly permeable double layer polyamide/zeolitic imidazolate framework in nanofiltration processes. Journal of Membrane Science, 652, 120490.
Lee, K-J., Lee, M-H., Shih, Y-H., Wang, C-P., Lin, H-Y., Jian S-R (2022) Fabrication of carboxylated carbon nanotube buckypaper composite films for bovine serum albumin detection. Coatings, 12(6), 810.
Altalhi, T., Ginic-Markovic, M., Han, N., Clarke, S., Losic, D. (2010). Synthesis of carbon nanotube (CNT) composite membranes. Membranes, 1(1), 37-47.
Yazid, A. F., Mukhtar, H., Nasir, R., Mohshim, D. F. (2022). Incorporating carbon nanotubes in nanocomposite mixed-matrix membranes for gas separation: a review. Membranes, 12(6), 589.
Gu, Y., Li, H., Liu, L., Li, J., Zhang, B., Ma, H. (2021). Constructing CNTs-based composite membranes for oil/water emulsion separation via radiation-induced “grafting to” strategy. Carbon, 178, 678-87.
Dumée, Lx., Sears, K., Schü tz Jr., Finn, N., Duke, M., Gray, S. (2010). Carbon nanotube based composite membranes for water desalination by membrane distillation. Desalination and Water treatment, 17(1-3), 72-9.
Yeung, R., Zhu, X., Gee, T., Gheen, B,. Jassby, D., Rodgers, V. G. (2020). Single and binary protein electroultrafiltration using poly (vinyl-alcohol)-carbon nanotube (PVA-CNT) composite membranes. PloS One, 15(4), e0228973.
Das, R., Ali, M. E., Abd Hamid, S. B., Ramakrishna, S., Chowdhury, Z. Z. (2014). Carbon nanotube membranes for water purification: A bright future in water desalination. Desalination, 336, 97-109.
Goh K, Karahan HE, Wei L, et al. (2016) Carbon nanomaterials for advancing separation membranes: A strategic perspective. Carbon, 109, 694-710.
Lee, K-J., Park, H-D. (2016). Effect of transmembrane pressure, linear velocity, and temperature on permeate water flux of high-density vertically aligned carbon nanotube membranes. Desalination and Water Treatment, 57(55), 26706-17.
Ma, J., Ping, D., Dong, X. (2017). Recent developments of graphene oxide-based membranes: A review. Membranes, 7(3), 2.
Yang, G-h., Bao, D-d., Zhang, D-q., Wang, C., Qu, L-l., Li, H-t. (2018). Removal of antibiotics from water with an all-carbon 3D nanofiltration membrane. Nanoscale Research Letters. 13(1), 1-8.
Nosrati, R., Olad, A., Maramifar, R. (2012). Degradation of ampicillin antibiotic in aqueous solution by ZnO/polyaniline nanocomposite as photocatalyst under sunlight irradiation. Environmental Science and Pollution Research, 19, 2291-9.
Ahmad, F., Zhu, D., Sun, J. (2021). Environmental fate of tetracycline antibiotics: degradation pathway mechanisms, challenges, and perspectives. Environmental Sciences Europe, 33(1), 64.
Zhang, Y., Cheng, Y., Chen, N., et al. (2014). Recyclable removal of bisphenol A from aqueous solution by reduced graphene oxide–magnetic nanoparticles: adsorption and desorption. Journal of Colloid and Interface Science, 421, 85-92.
Ncibi, M. C., Sillanpää, M. (2015). Optimized removal of antibiotic drugs from aqueous solutions using single, double and multi-walled carbon nanotubes. Journal of Hazardous Materials, 298, 102-10.
Zhao, J., Wang, Z., Zhao, Q., Xing, B. (2014). Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation. Environmental Science & Technology. 48(1), 331-9.
Yu, F., Ma, J., Bi, D. (2015). Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environmental Science and Pollution Research, 22, 4715-24.
Ying-Ying, W., Zhen-Hu, X. (2016). Multi-walled carbon nanotubes and powder-activated carbon adsorbents for the removal of nitrofurazone from aqueous solution. Journal of Dispersion Science and Technology, 37(5), 613-24.
Zhang, C., Lai, C., Zeng, G., et al. (2016). Efficacy of carbonaceous nanocomposites for sorbing ionizable antibiotic sulfamethazine from aqueous solution. Water Research, 95, 103-12.
Yan, H., Du, Q., Yang, H., Li, A., Cheng, R. (2016). Efficient removal of chlorophenols from water with a magnetic reduced graphene oxide composite. Science China Chemistry, 59, 350-9.
Qalyoubi, L., Al-Othman, A., Al-Asheh, S. (2022). Removal of ciprofloxacin antibiotic pollutants from wastewater using nano-composite adsorptive membranes. Environmental Research, 215, 114182.
Ma, Q., Chu, Y., Ni, X., et al. (2023). CeO2 modified carbon nanotube electrified membrane for the removal of antibiotics. Chemosphere, 310, 136771.
Pan, S-F., Zhu, M-P., Chen, J. P., Yuan, Z-H., Zhong, L-B., Zheng, Y-M. (2015). Separation of tetracycline from wastewater using forward osmosis process with thin film composite membrane–Implications for antibiotics recovery. Separation and Purification Technology. 153, 76-83.
Homayoonfal, M., Mehrnia, M. R. (2014). Amoxicillin separation from pharmaceutical solution by pH sensitive nanofiltration membranes. Separation and Purification Technology, 130, 74-83.
Song, Y., Meng, C., Chen, X., et al. (2023). Synchronous removal of antibiotics in sewage effluents by surface-anchored photocatalytic nanofiltration membrane in a continuous dynamic process. Environmental Science: Nano, 10(2), 567-80.
Lu, T., Xu, X., Liu, X., Sun, T. (2017). Super hydrophilic PVDF based composite membrane for efficient separation of tetracycline. Chemical Engineering Journal, 308, 151-9.
Liu, M-k., Liu, Y-y., Bao, D-d., et al. (2017). Effective removal of tetracycline antibiotics from water using hybrid carbon membranes. Scientific Reports, 7(1), 43717.
Stern, N., Stiglitz, J. E. (2021). The social cost of carbon, risk, distribution, market failures: An alternative approach. National Bureau of Economic Research Cambridge, MA, USA.
Downloads
Published
How to Cite
Issue
Section
License
Copyright of articles that appear in Journal of Applied Membrane Science & Technology belongs exclusively to Penerbit Universiti Teknologi Malaysia (Penerbit UTM Press). This copyright covers the rights to reproduce the article, including reprints, electronic reproductions, or any other reproductions of similar nature.