State-of-the-art Membrane Processing of Solution Rich in Phenolic Compounds

Authors

  • N. Hamzah School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • C. P. Leo School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Pulau Pinang, Malaysia

DOI:

https://doi.org/10.11113/amst.v27n2.265

Keywords:

Polyphenols, wastewater, membrane, membrane distillation

Abstract

Polyphenols and phenolic acids extracted from plants are natural antioxidants with high market value. However, they are susceptible to thermal processes, and a significant loss throughout food and beverage processing has been widely reported. This work reviews the state-of-the-aft membrane processing of the solution rich in phenolic compounds. Novel membrane processing allows phenolic concentration and water recovery simultaneously without using hazardous chemicals and high temperatures. Comparing pressure-driven membrane filtration processes with the advanced membrane processes at the low pressure  in this review allowed the proper process selection to concentration phenolic coumpounds. Pressure-driven membrane filtration processes, namely microfiltration, ultrafiltration, nanofiltration, and reverse osmosis, have been studied. Nanofiltration membranes offer high retention of polyphenols due to their matching molecular weight cut-off. Osmotic distillation, membrane distillation and forward osmosis are membrane processes operated at low pressure. Osmotic distillation and forward osmosis require drawing solutions with osmotic pressure differences to separate water from phenolic compounds. A similar separation is attained in membrane distillation by creating vapour pressure differences. Membrane distillation without drawing solution is recommended since membrane fouling can be mitigated using superhydrophobic membranes with self-cleaning properties. 

References

Grand View Research. 2023. Polyphenols Market Size, Share & Trends Analysis Report by Product (Grape Seed, Green Tea, Apple, Cocoa), by Application (Beverages, Food, Feed), by Region, and Segment Forecasts, 2023-2030. https://www.grandviewresearch.com/industry-analysis/polyphenols-market-analysis/toc [accessed 17/7/2023].

The Coca-Cola Company. 2023. Improving our water efficiency: Meeting goals and moving goalposts, https://www.coca-colacompany.com/media-center/improving-our-water-efficiency [accessed 17/07/2023].

R. Rahim, A. A. A. Raman, (2015). Cleaner production implementation in a fruit juice production plant. Journal of Cleaner Production, 101, 215-221.

O. Chedeville, M. Debacq, C. Porte. (2009). Removal of phenolic compounds present in olive mill wastewaters by ozonation. Desalination, 249, 865-869.

M. G. Galloni, E. Ferrara, E. Falletta, C. L. Bianchi. (2022). Olive mill wastewater remediation: from conventional approaches to photocatalytic processes by easily recoverable materials. Catalysts, 12, 923.

A. El-Abbassi, A. Hafidi, M. Khayet, M .C. García-Payo. (2013). Integrated direct contact membrane distillation for olive mill wastewater treatment. Desalination, 323, 31-38.

A. Giacobbo, J. M. do Prado, A. Meneguzzi, A. M. Bernardes, M. N. de Pinho. (2015). Microfiltration for the recovery of polyphenols from winery effluents. Separation and Purification Technology, 143, 12-18.

C. M. Galanakis, E. Markouli, V. Gekas. (2013). Recovery and fractionation of different phenolic classes from winery sludge using ultrafiltration. Separation and Purification Technology, 107, 245-251.

E. A. Baptista, P. C. R. Pinto, I. F. Mota, J. M. Loureiro, A. E. Rodrigues. (2015). Ultrafiltration of ethanol/water extract of Eucalyptus globulus bark: Resistance and cake build up analysis. Separation and Purification Technology, 144, 256-266.

Z. Zhu, Y. Liu, Q. Guan, J. He, G. Liu, S. Li, L. Ding, M. Y. Jaffrin. (2015). Purification of purple sweet potato extract by dead-end filtration and investigation of membrane fouling mechanism, food and bioprocess technology, 8, 1680-1689.

A. Cassano, L. Donato, C. Conidi, E. Drioli. (2008). Recovery of bioactive compounds in kiwifruit juice by ultrafiltration. Innovative Food Science & Emerging Technologies, 9, 556-562.

B. C. B. S. Mello, J. C. C. Petrus, M. D. Hubinger. (2010). Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. Journal of Food Engineering, 96, 533-539.

A. Giacobbo, A. M. Bernardes, M. N. de Pinho. (2013). Nanofiltration for the recovery of low molecular weight polysaccharides and polyphenols from winery effluents. Separation Science and Technology, 48(17), 2524-2530.

M. T. C. Machado, B. C. B. S. Mello, M. D. Hubinger. (2015). Evaluation of pequi (Caryocar Brasiliense Camb.) aqueous extract quality processed by membranes. Food and Bioproducts Processing, 95, 304-312.

M. Cifuentes-Cabezas, C. F. Galinha, J. G. Crespo, M. Cinta Vincent-Vela, J. Antonio Mendoza-Roca, S. Álvarez-Blanco. (2023). Nanofiltration of wastewaters from olive oil production: Study of operating conditions and analysis of fouling by 2D fluorescence and FTIR spectroscopy. Chemical Engineering Journal, 454, 140025.

J. M. Ochando-Pulido, J. R. Corpas-Martínez, J. A. Vellido-Perez, A. Martinez-Ferez. (2020). Optimization of polymeric nanofiltration performance for olive-oil-washing wastewater phenols recovery and reclamation. Separation and Purification Technology, 236, 116261.

M. S. De Almeida, R. C. Martins, R. M. Quinta-Ferreira, L. M. Gando-Ferreira. (2018). Optimization of operating conditions for the valorization of olive mill wastewater using membrane processes. Environmental Science and Pollution Research, 25, 21968-21981.

X. Sun, C. Wang, Y. Li, W. Wang, J. Wei. (2015). Treatment of phenolic wastewater by combined UF and NF/RO processes. Desalination, 355, 68-74.

V. Sygouni, A.G. Pantziaros, I. C. Iakovides, E. Sfetsa, P. I. Bogdou, E. A. Christoforou, C. A. Paraskeva. (2019). Treatment of Two-phase olive mill wastewater and recovery of phenolic compounds using membrane technology, Membranes, 9, 27.

P. D. A. Bastos, M. A. Santos, P. J. Carvalho, J. G. Crespo. (2020). Reverse osmosis performance on stripped phenolic sour water treatment – A study on the effect of oil and grease and osmotic pressure. Journal of Environmental Management, 261, 110229.

S. S. Kontos, F. K. Katrivesis, T. C. Constantinou, C. A. Zoga, I. S. Ioannou, P. G. Koutsoukos, C. A. Paraskeva. (2018). Implementation of membrane filtration and melt crystallization for the effective treatment and valorization of olive mill wastewaters. Separation and Purification Technology, 193, 103-111.

N. Hamzah, C. P. Leo. (2016). Fouling prevention in the membrane distillation of phenolic-rich solution using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles. Separation and Purification Technology, 167, 79-87.

J. Kujawa, D. Guilen-Burrieza, H. A. Arafat, M. Kurzawa, A. Wolan, W. Kujawski. (2015). Raw juice concentration by osmotic membrane distillation with hydrophobic polymeric membranes. Food and Bioprocess Technology, 8, 2146-2158.

A. El-Abbassi, M. Khayet, H. Kiai, A. Hafidi, M. C. García-Payo. (2013). Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Separation and Purification Technology, 104, 327-332.

H. Kiai, M. C. García-Payo, A. Hafidi, M. Khayet. (2014). Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chemical Engineering and Processing: Process Intensification, 86, 153-161.

K. S. Bahçeci, H. G. Akıllıoğlu, V. Gökmen. (2015). Osmotic and membrane distillation for the concentration of tomato juice: Effects on quality and safety characteristics. Innovative Food Science & Emerging Technologies, 31, 131-138.

S. K. Dershmukh, V. S. Sapkal, R. S. Sapkal. (2013). Dehydration of aloe vera juice by membrane distillation. Journal of Chemical and Pharmaceutical Sciences, 6(1), 66-73.

Á. Kozák, E. Békássy-Molnár, G. Vata. (2009). Production of black-current juice concentrate by using membrane distillation. Desalination, 241(1-3), 309-314.

L. F. Sotoft, K. V. Christensen, R. Andrésen, B. Norddahl. (2012). Full scale plant with membrane based concentration of blackcurrant juice on the basis of laboratory and pilot scale tests. Chemical Engineering and Processing: Process Intensification, 54, 12-21.

V. D. Alves, I. M. Coelhoso. (2006). Orange juice concentration by osmotic evaporation and membrane distillation: A comparative study. Journal of Food Engineering, 74, 125-133.

A. El-Abbassi, H. Kiai, A. Hafidi, M.C. García-Payo, M. Khayet. (2012). Treatment of olive mill wastewater by membrane distillation using polytetrafluoroethylene membranes. Separation and Purification Technology, 98, 55-61.

A. El-Abbassi, M. Khayet. H. Kiai, A. Hafidi, M. C. García-Payo. (2013) Treatment of crude olive mill wastewaters by osmotic distillation and osmotic membrane distillation. Separation and Purification Technology, 104, 327-332.

H. Kiai, M.C. García-Payo, A. Hafidi, M. Khayet. (2014). Application of membrane distillation technology in the treatment of table olive wastewaters for phenolic compounds concentration and high quality water production. Chemical Engineering and Processing: Process Intensification, 86, 153-161.

C. A. Quist-Jensen, F. Macedonio, C. Conid, A. Cassano, S. Aljlil, O. A. Alharbi, E. Drioli. (2016). Direct contact membrane distillation for the concentration of clarified orange juice. Journal of Food Engineering, 187, 37-43.

P. Onsekizoglu. (2013). Production of high quality clarified pomegranate juice concentrate by membrane processes. Journal of Membrane Science, 442, 264-271.

N. Hamzah, C. P. Leo. (2017). Membrane distillation of saline with phenolic compound using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles: Separation, fouling and self-cleaning evaluation. Desalination, 418, 79-88.

N. Hamzah, C. P. Leo. (2017). Membrane distillation of saline with phenolic compound using superhydrophobic PVDF membrane incorporated with TiO2 nanoparticles: Separation, fouling and self-cleaning evaluation. Desalination, 418, 79-88.

E. Yilmaz, P. O. Bagci. (2018). Production of phytotherapeutics from broccoli juice by integrated membrane processes. Food Chemistry, 242, 264-217.

H. Julian, F. Yaohanny, A. Devina, R. Purwadi, I. G. Wenten. (2020). Apple juice concentration using submerged direct contact membrane distillation (SDCMD). Journal of Food Engineering, 272, 109807.

R. Tundis, C. Conidi, M. R. Loizzo, V. Sicari, R. Romeo, A. Cassano. (2021). Concentration of bioactive phenolic compounds in olive mill wastewater by direct contact membrane distillation. Molecules, 26(6), 1808.

E. Russo, A. Spallarossa, A. Comite, M. Pagliero, P. Guida, V. Belotti, D. Caviglia, A. M. Schito. (2022). Valorization and potential antimicrobial use of olive mill wastewater (OMW) from Italian olive oil production. Antioxidants, 11(5), 903.

N. Singh, I. Petrinic, C. Hélix-Nielsen, S. Basu, M. Balakrishnan. (2018). Concentrating molasses distillery wastewater using biomimetic forward osmosis (FO) membranes. Water Research, 130, 271-280.

J. Huang, Y. Ren, X. Wang, H. Li, Y. Wang, J. Zhang, Z. Wang, Z. Li, T. Yue, Z. Gao. (2022). Dealcoholization of kiwi wine by forward osmosis: Evaluation of membrane fouling propensity and product quality. Chemical Engineering Research and Design, 178, 189-198.

H. M. Tavares, I. C. Tessaro, N. S. M. Cardozo. (2022). Concentration of grape juice: Combined forward osmosis/evaporation versus conventional evaporation. Innovative Food Science & Emerging Technologies, 75, 102905.

C. Carbonell-Alcaina, J. L. Soler-Cabezas, A. Bes-Piá, M. C. Vincent-Vela, J. A. Mendoza-Roca, L. Pastor-Alcañiz, S. Álvarez-Blanco, (2020). Integrated membrane process for the treatment and reuse of residual table olive fermentation brine and anaerobically digested sludge centrate. Membranes, 10, 253.

Downloads

Published

2023-07-24

How to Cite

Hamzah, N., & Leo, C. P. (2023). State-of-the-art Membrane Processing of Solution Rich in Phenolic Compounds. Journal of Applied Membrane Science & Technology, 27(2), 1–10. https://doi.org/10.11113/amst.v27n2.265

Issue

Section

Articles