Mitigation of Antimicrobial Resistance during Wastewater Treatment by Membrane Technologies

Authors

  • Mardalisa Mardalisa Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
  • Rongxuan Wang Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
  • Ryo Honda Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
  • Wilai Chiemchaisri Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand
  • Chart Chiemchaisri Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Road, Chatuchak, Bangkok 10900, Thailand

DOI:

https://doi.org/10.11113/amst.v27n1.263

Keywords:

Antimicrobial resistance (AMR), antimicrobial resistance gene (ARG), membrane bioreactor (MBR), wastewater treatment, reclaimed water

Abstract

The threat of antimicrobial resistance (AMR) to human health is predicted to become a significant infectious disease. Domestic sewage and wastewater treatment plants (WWTPs) are critical hotspots for controlling the spread of antibiotic resistant bacteria (ARB) and antimicrobial resistance genes (ARGs) in the environment. A wastewater treatment system is not necessarily designed to mitigate AMR problems in wastewater. Furthermore, the presence of ARB and ARGs for a long time in WWTPs is reported as a reservoir of intracellular and extracellular ARG through horizontal gene transfer. Based on the studies, the additional membrane filtration with either microfiltration (MF) or ultrafiltration (UF) can reduce ARB and ARGs effectively through the separation mechanism. However, there are still inconclusive results when comparing ARG removal efficiencies between MBR and conventional processes. Further studies are required to clarify the effect of water qualities and membrane fouling conditions on ARG removal.

References

C. J. Murray, K. S. Ikuta, F. Sharara, L. Swetschinski, G. R. Aguilar, A. Gray, C. Han, C. Bisignano, P. Rao, E. Wool, S. C. Johnson. 2022. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. The Lancet. 399: 629-655. http://doi.org/10.1016/S0140-6736(21)02724-0.

United Nations Environment Programme. 2022. Environmental Dimensions of Antimicrobial Resistance: Summary for Policymakers. https://wedocs.unep.org/bitstream/handle/20.500.11822/38373/antimicrobial_R.pdf.

M. Kumar, T. Chaminda, A. K. Patel, H. Sewwandi, P. Mazumder, M. Joshi, R. Honda. 2020. Prevalence of Antibiotic Resistance in the Tropical Rivers of Sri Lanka and India. Environ. Res. 188: 109765. https://doi.org/10.1016/j.envres.2020.109765.

R. Honda, T. Watanabe, V. Sawaittayotin, Y. Masago, R. Chulasak, K. Tanong, G. T. Chaminda, K. Wongsila, C. Sienglum, V. Sunthonwatthanaphong, A. Poonnotok, W. Chiemchaisri, C. Chiemchaisri, H. Furumai, K. Yamamoto. 2016. Impacts of Urbanization on the Prevalence of Antibiotic Resistant Escherichia coli in the Chaophraya River and Its Tributaries. Water Sci. Technol. 73: 362-374. https://doi.org/10.2166/wst.2015.502.

S. Threedeach, W. Chiemchaisri, T. Watanabe, C. Chiemchaisri, R. Honda, K. Yamamoto. 2012. Antibiotic Resistance of Escherichia coli in Leachates from Municipal Solid Waste Landfills: Comparison between Semi-aerobic and Anaerobic Operations. Bioresour. Technol. 113: 253-258. https://doi.org/10.1016/j.biortech.2012.01.086.

M. L. Brusseau, M. Ramirez-Andreotta, I. L. Pepper, J. Maximillian. 2019. Environmental Impacts on Human Health and Well-being. Environ. Pollut. Sci. 477-499. https://doi.org/10.1016/B978-0-12-814719-1.00026-4.

M. Pazda, J. Kumirska, P. Stepnowski, E. Mulkiewicz. 2019. Antibiotic Resistance Genes Identified in Wastewater Treatment Plant Systems–A Review. Sci. Tot. Environ. 697: 134023. https://doi.org/10.1016/j.scitotenv.2019.134023.

M. Kolář, K. Urbanek, T. Látal. 2001. Antibiotic Selective Pressure and Development of Bacterial Resistance. Int. J. Anti. Agents. 17: 357-363. https://doi.org/10.1016/S0924-8579(01)00317-X.

A. Di Cesare, E. M. Eckert, S. D’Urso, R. Bertoni, D. C. Gillan, R. Wattiez, G. Corno. 2016. Co-occurrence of Integrase 1, Antibiotic and Heavy Metal Resistance Genes in Municipal Wastewater Treatment Plants. Water Res. 94: 208-214. https://doi.org/10.1016/j.watres.2016.02.049.

M. Pronk, M. K. De Kreuk, B. De Bruin, P. Kamminga, R. V. Kleerebezem, M. C. M. Van Loosdrecht. 2015. Full Scale Performance of the Aerobic Granular Sludge Process for Sewage Treatment. Water Res. 84: 207-217. https://doi.org/10.1016/j.watres.2015.07.011.

C. Pal, J. Bengtsson-Palme, E. Kristiansson, D. G. Larsson. 2015. Co-occurrence of Resistance Genes to Antibiotics, Biocides and Metals Reveals Novel Insights into Their Co-selection Potential. BMC Genomics. 16: 1-14. https://doi.org/10.1186/s12864-015-2153-5.

M. A. Barnes, C. R. Turner, C. L. Jerde, M. A. Renshaw, W. L. Chadderton, D. M. Lodge. 2014. Environmental Conditions Influence eDNA Persistence in Aquatic Systems. Environ. Sci. Technol. 48: 1819-1827. https://doi.org/10.1021/es404734p.

H. Hao, D.Y. Shi, D. Yang, Z. W. Yang, Z. G. Qiu, W. L. Liu, Z. Q. Shen, J. Yin, H. R. Wang, J. W. Li, H. Wang, M. Jin. 2019. Profiling of Intracellular and Extracellular Antibiotic Resistance Genes in Tap Water. J. Hazard Mater. 365: 340-345. https://doi.org/10.1016/j.jhazmat.2018.11.004.

R. Aali, M. Nikaeen, H. Khanahmad, A. Hassanzadeh. 2014. Monitoring and Comparison Of Antibiotic Resistant Bacteria and Their Resistance Genes in Municipal And Hospital Wastewaters. Int. J. Prev. Med. 5: 887-894.

R. Honda, C. Tachi, M. Noguchi, R. Yamamoto-Ikemoto, T. Watanabe. 2020. Fate and Seasonal Change of Escherichia coli Resistant to Different Antibiotic Classes at Each Stage of Conventional Activated Sludge Process. J. Water Health. 18(6): 879-889. https://doi.org/10.2166/wh.2020.013.

J. Alexander, N. Hembach, T. Schwartz. 2020. Evaluation of Antibiotic Resistance Dissemination by Wastewater Treatment Plant Effluents with Different Catchment Areas in Germany. Sci. Rep. 10: 8952. https://doi.org/10.1038/s41598-020-65635-4.

V. V. Vlassov, P. P. Laktionov, E. Y. Rykova. 2007. Extracellular Nucleic Acids. Bioessays. 29: 654-667. https://doi.org/10.1002/bies.20604.

A. Zarei-Baygi, A. L. Smith. 2021. Intracellular Versus Extracellular Antibiotic Resistance Genes in the Environment: Prevalence, Horizontal Transfer, and Mitigation Strategies. Bioresour. Technol. 319: 124181. https://doi.org/10.1016/j.biortech.2020.124181.

K. M. Pärnänen, C. Narciso-da-Rocha, D. Kneis, T. U. Berendonk, D. Cacace, T. T. Do, C. Elpers, D. Fatta-Kassinos, I. Henriques, T. Jaeger, A. Karkman. 2019. Antibiotic Resistance in European Wastewater Treatment Plants Mirrors the Pattern Of Clinical Antibiotic Resistance Prevalence. Sci. Adv. 5: eaau9124.

R. Honda, N. Matsuura, H. Hara-Yamamura, S. Sorn, Y. Morinaga, V. H. Than, M. A. Sabar, Y. Masakke, S. Asakura, T. Watanabe. 2022. Transition of Antimicrobial Resistome in Wastewater Treatment Plants: Impact of Process Configuration, Geographical Location and Season. Research Square. https://doi.org/ 10.21203/rs.3.rs-2011499/v1.

M. Samer. 2015. Biological and Chemical Wastewater Treatment Processes. Wastewater Treatment Engineering. 150: 212. http://dx.doi.org/10.5772/61250.

X. Liao, B. Li, R. Zou, Y. Dai, X. Shuguang, B. Yuan. 2016. Biodegradation of Antibiotic Ciprofloxacin: Pathways, Influential Factors, and Bacterial Community Structure. Environ. Sci. Pollut. Res. 23: 7911-7918 (2016). https://doi.org/10.1007/s11356-016-6054-1.

P. Kulkarni, N. D. Olson, G. A. Raspanti, R. E. Rosenberg Goldstein, S. G. Gibbs, A. Sapkota, A. R. Sapkota. 2017. Antibiotic Concentrations Decrease during Wastewater Treatment but Persist at Low Levels in Reclaimed Water. Int. J. Environ. Res. Public Health. 14: 668. https://doi.org/10.3390/ijerph14060668.

R. Singh, A. P. Singh, S. Kumar, B. S. Giri, K. H. Kim. 2019. Antibiotic Resistance in Major Rivers in the World: A Systematic Review on Occurrence, Emergence, And Management Strategies. J. Cleaner Prod. 234: 1484-1505. https://doi.org/10.1016/j.jclepro.2019.06.243.

B. Aslam, W. Wang, M. I. Arshad, M. Khurshid, S. Muzammil, M. H. Rasool, M. A. Nisar, R. F. Alvi, M. A. Aslam, M. U. Qamar, M. K. F. Salamat, Z. Baloch. 2018. Antibiotic Resistance: A Rundown of a Global Crisis. Infect. Drug Resist. 11: 1645-1658. https://doi.org/10.2147/IDR.S173867.

J. Zhang, M. Yang, H. Zhong, M. Liu, Q. Sui, L. Zheng, J. Tong, Y. Wei. 2018. Deciphering the Factors Influencing the Discrepant Fate of Antibiotic Resistance Genes in Sludge and Water Phases during Municipal Wastewater Treatment. Bioresour. Tech. 265: 310-319. https://doi.org/10.1016/j.biortech.2018.06.021.

J. Du, J. J. Geng, H. Q. Ren, L. L. Ding, K. Xu, Y. Zhang. 2015. Variation Of Antibiotic Resistance Genes in Municipal Wastewater Treatment Plant with A2O-MBR System. Environ. Sci. Pollut. Res. 22: 3715-3726. https://doi.org/10.1007/s11356-014-3552-x.

M. K. Pei, B. Zhang, Y. L. He, J. Q. Su, K. Gin, O. Lev, G. X. Shen, S. Q. Hu. 2019. State of the Art of Tertiary Treatment Technologies for Controlling Antibiotic Resistance in Wastewater Treatment Plants. Environ. Int. 131: 105026. https://doi.org/10.1016/j.envint.2019.105026.

T. H. Le, C. Ng, N. H. Tran, H. Chen, K. Y. H. Gin. 2018. Removal of Antibiotic Residues, Antibiotic Resistant Bacteria and Antibiotic Resistance Genes in Municipal Wastewater by Membrane Bioreactor Systems. Water Res. 145: 498-508. https://doi.org/10.1016/j.watres.2018.08.060.

C. X. Hiller, U. Hübner, S.Fajnorova, T. Schwartz, J. E. Drewes. 2019. Antibiotic Microbial Resistance (AMR) Removal Efficiencies by Conventional and Advanced Wastewater Treatment Processes: A Review. Sci. Total Environ. 685: 596-608. https://doi.org/10.1016/j.scitotenv.2019.05.315.

C. Chiemchaisri, W. Chiemchaisri, S. Dachsrijan, C. Saengam. 2022. Coliform Removal in Membrane Bioreactor and Disinfection during Hospital Wastewater Treatment. J. Eng. Technol. Sci. 54: 220401. http://doi.org/10.5614/j.eng.technol.sci.2022.54.4.1.

W. Chiemchaisri, C. Chiemchaisri, C. Witthayaphirom, C. Saengam, K. Mahavee. 2022. Reduction of Antibiotic-resistant-E. coli, -K. Pneumoniae, -A. baumannii in Aged-sludge of Membrane Bioreactor Treating Hospital Wastewater. Sci. Total Environ. 812: 152470. https://doi.org/10.1016/j.scitotenv.2021.152470.

G. Bairán, G. R. Pérez, E. C. Bravo, E. Torres. 2020. Treatment Processes for Microbial Resistance Mitigation: The Technological Contribution to tackle the problem of antibiotic resistance. Int. J. Environ. Res. Public Health. 17: 8866. https://doi.org/10.3390/ijerph17238866.

S. Wang, X. X. Ma, Y. L. Liu, X. S. Yi, G. C. Du, J. Li. 2020. Fate of Antibiotics, Antibiotic-resistant Bacteria, and Cell-free Antibiotic-resistant Genes in Full-scale Membrane Bioreactor Wastewater Treatment Plants. Bioresour. Technol. 302:122825. https://doi.org/10.1016/j.biortech.2020.122825.

R. Gao, M. H. Sui. 2021. Antibiotic Resistance Fate in the Full-scale Drinking Water and Municipal Wastewater Treatment Processes: A Review. Environ. Eng. Res. 26: 200324. https://doi.org/10.4491/eer.2020.324.

B. Li, Y. Qiu, J. Li, P. Liang, X. Huang. 2019. Removal of Antibiotic Resistance Genes in four Full-scale Membrane Bioreactors. Sci. Total Environ. 653: 112-119. https://doi.org/10.1016/j.scitotenv.2018.10.305.

C. U. Schwermer, P. Krzeminski, A. C. Wennberg, C. Vogelsang, W. Uhl. 2018. Removal of Antibiotic Resistant E. coli In Two Norwegian Wastewater Treatment Plants and by Nano- and Ultra-filtration Processes. Water Sci. Technol. 77: 1115-1126. https://doi.org/10.2166/wst.2017.642.

Y. J. Zhu, Y. Y. Wang, S. Zhou, X. X. Jiang, X. Ma, C. Liu. 2018. Robust Performance of a Membrane Bioreactor for Removing Antibiotic Resistance Genes Exposed to Antibiotics: Role of Membrane Foulants. Water Res. 130: 139-150. https://doi.org/10.1016/j.watres.2017.11.067.

Q. X. Wen, L. Yang, Y. Q. Zhao, L. Huang, Z. Q. Chen. 2018. Insight into Effects of Antibiotics on Reactor Performance and Evolutions of Antibiotic Resistance Genes and Microbial Community in a Membrane Reactor. Chemosphere. 197: 420-429. https://doi.org/10.1016/j.chemosphere.2018.01.067.

R. X. Wang, N. Matsuura, H. H. Yamamura, T. Watanabe, R. Honda. 2021. Initial Behaviors and Removal of Extracellular Plasmid Gene in Membrane Bioreactor. J. Environ. Mang. 298: 113541. https://doi.org/10.1016/j.jenvman.2021.113541

H. Cheng and P.Y. Hong. 2017. Removal of Antibiotic-resistant Bacteria and Antibiotic Resistance Genes Affected by Varying Degrees of Fouling on Anaerobic Microfiltration Membranes. Environ. Sci. Technol. 51: 12200-12209. https://doi.org/10.1021/acs.est.7b03798.

M. V. R. Breazeal, J. T. Novak, P. J. Vikesland, A. Pruden. 2013. Effect of Wastewater Colloids on Membrane Removal of Antibiotic Resistance Genes. Water Res. 47: 130-140. https://doi.org/10.1016/j.watres.2012.09.044.

P. Krzeminski, E. Feys, M. A. d'Auriac, A. C. Wennverg, M. Umar, C. U. Schwermer, W. Uhl. 2020. Combined Membrane Filtration and 265 nm UV Irradiation for Effective Removal of Cell Free Antibiotic Resistance Genes from Feed Water And Concentrate. J. Membr. Sci. 598: 117676. https://doi.org/10.1016/j.memsci.2019.117676.

Z. Li, L. Yuan, S. Gao, L. Wang and G. Sheng. 2019. Mitigated Membrane Fouling and Enhanced Removal of Extracellular Antibiotic Resistance Genes from Wastewater Effluent via an Integrated Pre-coagulation and Microfiltration Process. Water Res. 159: 145-152. https://doi.org/10.1016/j.watres.2019.05.005.

L. Luo, J. Yao, W. Liu, L. Yang, H. Li, M. Liang, H. Ma, Z. Liu, and Y. Chen. 2021. Comparison of Bacterial Communities and Antibiotic Resistance Genes in Oxidation Ditches and Membrane Bioreactors. Sci. Rep. 11: 8955. https://doi.org/10.1038/s41598-021-88335-z.

K. Slipko, D. Reif, M. Wögerbauer, P. Hufnagl, J. Krampe and N. Kreuzinger. 2019. Removal of Extracellular Free DNA and Antibiotic Resistance Genes from Water and Wastewater by Membranes Ranging from Microfiltration to Reverse Osmosis. Water Res. 164: 114916. https://doi.org/10.1016/j.watres.2019.114916.

Downloads

Published

2023-03-20

How to Cite

Mardalisa, M., Wang, R., Honda, R., Chiemchaisri, W., & Chiemchaisri, C. (2023). Mitigation of Antimicrobial Resistance during Wastewater Treatment by Membrane Technologies. Journal of Applied Membrane Science & Technology, 27(1), 79–88. https://doi.org/10.11113/amst.v27n1.263

Issue

Section

Articles