Effect of Diameter of Carbon Nanotubes in Nanocomposite Membrane for Methyl Orange Dye Removal

Authors

  • Ho Kah Chun Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia https://orcid.org/0000-0001-5591-3120
  • Jin Heng Lim Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia
  • Aida Isma Mohd Idris Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia
  • Yeit Haan Teow Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor Darul Ehsan, Malaysia
  • Nii Chien Ng Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810 Petaling Jaya, Selangor Darul Ehsan, Malaysia

DOI:

https://doi.org/10.11113/amst.v27n1.262

Keywords:

Diameter of nanotubes; graphene oxide, membrane antifouling, multiwalled carbon nanotubes, nanocomposite membrane

Abstract

It is worth noticing that structure of nanomaterials affects the membrane performance, however, the effect of diameter of multiwalled carbon nanotubes (MWCNTs) has not been discussed in the past. This research aims to investigate the effect of diameter of MWCNTs on the performance of graphene oxide (GO)/ MWCNTs nanocomposite membrane for methyl orange dye removal. MWCNTs with different diameters (12-15 nm, 30-50 nm) with the same length (< 10 µm) are used to synthesize the nanocomposite membrane. The characteristics of the synthesized nanocomposite membrane were determined by surface hydrophilicity, pore size and porosity, zeta potential, and Fourier-transfer infrared (FTIR) spectroscopy. Besides, the membrane performance was evaluated by the water permeability test, dye rejection test, and antifouling test. The result showed that pure MWCNTs (30-50 nm) nanocomposite membrane (M2b) has the best performance among the synthesized membrane. The dye rejection of M2b membrane reached 86.77% and the normalized flux was approximately 0.82. Lower dye rejection (83.37%) and normalized flux (0.76) were attained by M2a membrane with smaller diameter MWCNTs (12-15 nm). This was due to M2b membrane having a smaller pore size (0.032 nm), which helped reduce the tendency of dye to pass through the membrane. Besides, M2b membrane has a more negative surface charge (-10.93 mV) that produces larger repulsion force, resulting in more dye being rejected. In conclusion, the performance of the synthesized nanocomposite membrane particularly antifouling properties can be enhanced with the addition of MWCNTs with larger diameter.

References

M. Elimelech. 2006. The global challenge for adequate and safe water. Journal of Water Supply: Research and Technology - AQUA. 55: 3-10. https://doi.org/10.2166/aqua.2005.064.

D. A. Yaseen, M. Scholz. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. International Journal of Environmental Science and Technology. 16: 1193-1226. https://doi.org/10.1007/s13762-018-2130-z.

J. R. Werber, C. O. Osuji, M. Elimelech. 2016. Materials for next-generation desalination and water purification membranes. Nat Rev Mater. 1. https://doi.org/10.1038/natrevmats.2016.18.

H. Sharifi, P. A. Moghaddam, S. Jafarmadar, A. M. Nikbakht, A. Hosainpour. 2022. Fouling performance of a horizontal corrugated tube due to air injection, international journal of engineering. Transactions B: Applications. 35: 1074-1081. https://doi.org/10.5829/ije.2022.35.05b.22.

M. R. Halvaeyfar, S. M. Mirhosseini, E. Zeighami, A. H. Joshaghani. 2022. Experimental study on bonding CFRP to fiber concrete beam considering the effect of using nanographene oxide in improving the mechanical properties of polyamine resin. International Journal of Engineering, Transactions B: Applications. 35. https://doi.org/10.5829/IJE.2022.35.08B.09.

J. Du, N. Li, Y. Tian, J. Zhang, W. Zuo. 2020. Preparation of PVDF membrane blended with graphene oxide-zinc sulfide (GO-ZnS) nanocomposite for improving the anti-fouling property. J Photochem Photobiol A Chem. 400: 112694. https://doi.org/10.1016/j.jphotochem.2020.112694.

S. M. Abdelbasir, A. E. Shalan. 2019. An overview of nanomaterials for industrial wastewater treatment. Korean Journal of Chemical Engineering. 36: 1209-1225. https://doi.org/10.1007/s11814-019-0306-y.

L. Bai, H. Liang, J. Crittenden, F. Qu, A. Ding, J. Ma, X. Du, S. Guo, G. Li. 2015. Surface modification of UF membranes with functionalized MWCNTs to control membrane fouling by NOM fractions. J Memb Sci. 492: 400-411. https://doi.org/10.1016/j.memsci.2015.06.006.

Y. X. Jia, H. L. Li, M. Wang, L. Y. Wu, Y. D. Hu. 2010. Carbon nanotube: Possible candidate for forward osmosis. Sep Purif Technol. 75: 55-60. https://doi.org/10.1016/j.seppur.2010.07.011.

Z. Yang, H. Peng, W. Wang, T. Liu. 2010. Crystallization behavior of poly(ε-caprolactone)/layered double hydroxide nanocomposites. J Appl Polym Sci. 116: 2658-2667. https://doi.org/10.1002/app.

K. J. Kim, M. Y. Huh, W. S. Kim, J. H. Song, H. S. Lee, J. Y. Kim, S. R. Lee, W. S. Seo, S. M. Yang, Y. S. Park. 2018. The effect of carbon nanotube diameter on the electrical, thermal, and mechanical properties of polymer composites. Carbon Letters. 26: 95-101. https://doi.org/10.5714/CL.2018.26.095.

I. Dubnikova, E. Kuvardina, V. Krasheninnikov, S. Lomakin, I. Tchmutin, S. Kuznetsov. 2010. The effect of multiwalled carbon nanotube dimensions on the morphology, mechanical, and electrical properties of melt mixed polypropylene-based composites. J Appl Polym Sci. 117: 259-272. https://doi.org/10.1002/app.31979.

G. S. Ajmani, D. Goodwin, K. Marsh, D. H. Fairbrother, K. J. Schwab, J. G. Jacangelo, H. Huang. 2012. Modification of low pressure membranes with carbon nanotube layers for fouling control. Water Res. 46: 5645-5654. https://doi.org/10.1016/j.watres.2012.07.059.

M. Alsawat, T. Altalhi, T. Kumeria, A. Santos, D. Losic. 2015. Carbon nanotube-nanoporous anodic alumina composite membranes with controllable inner diameters and surface chemistry: Influence on molecular transport and chemical selectivity. Carbon N Y. 93: 681-692. https://doi.org/10.1016/j.carbon.2015.05.090.

Y. M. Chen, H. Kah Chun, M. K. Chan, Y. H. Teow, M. Aida Isma. 2022. Optimization of Antifouling Properties of Mixed Matrix Membrane Synthesized via in-situ Colloidal Precipitation. Journal of Membrane Science and Research.

C. Z. Lee, H. Kah Chun, M. K. Chan, Y. H. Teow. 2022. Effect of Carbon Nanomaterials Concentration in Nanocomposite Membrane for Methyl Blue Dye Removal. J Teknol. 84: 19-27. https://doi.org/10.11113/jurnalteknologi.v84.18277.

K. C. Ho, Y. H. Teow, A. W. Mohammad, W. L. Ang, P. H. Lee. 2018. Development of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) nanocomposite conductive membranes for electrically enhanced fouling mitigation. J Memb Sci. 552: 189-201. https://doi.org/10.1016/j.memsci.2018.02.001.

G. Yang, Z. Xie, M. Cran, D. Ng, S. Gray. 2019. Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering. J Memb Sci. 579: 40-51. https://doi.org/10.1016/j.memsci.2019.02.034.

M. K. Chan, C. S. Ong, P. Kumaran. 2018. Development and characterization of glycerol coating on the PAN/PVDF composite membranes. IOP Conf Ser Mater Sci Eng. 458. https://doi.org/10.1088/1757-899X/458/1/012006.

Y. H. Teow, Shah. Mubassir, K. C. Ho, A. W. Mohammad. 2018. A study on membrane technology for surface water treatment : Synthesis, characterization and performance test. Membrane Water Treatment. 2: 69-77. https://doi.org/10.12989/mwt.2018.9.2.069.

N. C. Homem, N. de Camargo Lima Beluci, S. Amorim, R. Reis, A. M. S. Vieira, M. F. Vieira, R. Bergamasco, M. T. P. Amorim. 2019. Surface modification of a polyethersulfone microfiltration membrane with graphene oxide for reactive dyes removal. Appl Surf Sci. 486: 499-507. https://doi.org/10.1016/j.apsusc.2019.04.276.

A. Volkov, R. Federation, R. Academy. 2020. Encyclopedia of Membranes. 1-2. https://doi.org/10.1007/978-3-642-40872-4.

S. H. Maruf, L. Wang, A. R. Greenberg, J. Pellegrino, Y. Ding. 2013. Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes. J Memb Sci. 428: 598-607. https://doi.org/10.1016/j.memsci.2012.10.059.

Z. Rahimi, A. A. Zinatizadeh, S. Zinadini, M. C. M. van Loosdrecht. 2020. β-cyclodextrin functionalized MWCNTs as a promising antifouling agent in fabrication of composite nanofiltration membranes. Sep Purif Technol. 247. https://doi.org/10.1016/j.seppur.2020.116979.

N. Aryanti, F. K. I. Sandria, R. H. Putriadi, D. H. Wardhani. 2017 .Evaluation of micellar-enhanced ultrafiltration (MEUF) membrane for dye removal of synthetic Remazol dye wastewater. Engineering Journal. 21: 23-35. https://doi.org/10.4186/ej.2017.21.3.23.

D. Ji, C. Xiao, S. An, J. Zhao, J. Hao, K. Chen. 2019. Preparation of high-flux PSF/GO loose nanofiltration hollow fiber membranes with dense-loose structure for treating textile wastewater. Chemical Engineering Journal. 33-42. https://doi.org/10.1016/j.cej.2019.01.111.

A. Mollahosseini, A. Rahimpour, M. Jahamshahi, M. Peyravi, M. Khavarpour. 2012. The effect of silver nanoparticle size on performance and antibacteriality of polysulfone ultrafiltration membrane. Desalination. 306: 41-50. https://doi.org/10.1016/j.desal.2012.08.035.

S. Vishali, E. Kavitha. 2021. Application of membrane-based hybrid process on paint industry wastewater treatment. Membrane-Based Hybrid Processes for Wastewater Treatment. 97-117. https://doi.org/10.1016/b978-0-12-823804-2.00016-1.

B. Hudaib, V. Gomes, J. Shi, C. Zhou, Z. Liu. 2018. Poly (vinylidene fluoride)/polyaniline/MWCNT nanocomposite ultrafiltration membrane for natural organic matter removal. Sep Purif Technol. 190: 143-155. https://doi.org/10.1016/j.seppur.2017.08.026.

A. S. Adeleye, J. R. Conway, K. Garner, Y. Huang, Y. Su, A. A. Keller. 2016. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal. 286: 640-662. https://doi.org/10.1016/j.cej.2015.10.105.

J. Zhang, Z. Wang, Q. Wang, C. Pan, Z. Wu. 2017. Comparison of antifouling behaviours of modified PVDF membranes by TiO2sols with different nanoparticle size: Implications of casting solution stability. J Memb Sci. 525: 378-386. https://doi.org/10.1016/j.memsci.2016.12.021.

F. N. A. M. Sabri, M. R. Zakaria, H. M. Akil. 2020. Dispersion and stability of multiwalled carbon nanotubes (MWCNTs) in different solvents. AIP Conf Proc. 2267. https://doi.org/10.1063/5.0024711.

A. N. Omrani, E. Esmaeilzadeh, M. Jafari, A. Behzadmehr. 2019. Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids. Diam Relat Mater. 93: 96-104. https://doi.org/10.1016/j.diamond.2019.02.002.

L. Boor, K. Victor, H. Raed, H. Nidal. 2013. A review on membrane fabrication: Structure, properties and performance relationship. Desalination. 326: 77-95.

P. Sahu, S. Musharaf Ali, K. T. Shenoy, S. Mohan. 2019. Nanoscopic insights of saline water in carbon nanotube appended filters using molecular dynamics simulations. Physical Chemistry Chemical Physics. 21: 8529-8542. https://doi.org/10.1039/c9cp00648f.

M. Thomas, B. Corry. 2016. A computational assessment of the permeability and salt rejection of carbon nanotube membranes and their application to water desalination, Philosophical Transactions of the Royal Society A: Mathematical. Physical and Engineering Sciences. 374. https://doi.org/10.1098/rsta.2015.0020.

K. Yang, L. J. Huang, Y. X. Wang, Y. C. Du, Z. J. Zhang, Y. Wang, M. J. Kipper, L. A. Belfiore, J. G. Tang. 2020. Graphene oxide nanofiltration membranes containing silver nanoparticles: Tuning separation efficiency via nanoparticle size. Nanomaterials. 10. https://doi.org/10.3390/nano10030454.

L. Wu, X. Liu, G. Lv, R. Zhu, L. Tian, M. Liu, Y. Li, W. Rao, T. Liu, L. Liao. 2021. Study on the adsorption properties of methyl orange by natural one-dimensional nano-mineral materials with different structures. Sci Rep. 11. https://doi.org/10.1038/s41598-021-90235-1.

M. Padaki, R. Surya Murali, M. S. Abdullah, N. Misdan, A. Moslehyani, M. A. Kassim, N. Hilal, A. F. Ismail. 2015. Membrane technology enhancement in oil-water separation. A review. Desalination. 357: 197-207. https://doi.org/10.1016/j.desal.2014.11.023.

Downloads

Published

2023-03-20

How to Cite

Kah Chun, H., Lim, J. H., Mohd Idris, A. I., Teow , Y. H., & Ng, N. C. (2023). Effect of Diameter of Carbon Nanotubes in Nanocomposite Membrane for Methyl Orange Dye Removal. Journal of Applied Membrane Science & Technology, 27(1), 47–61. https://doi.org/10.11113/amst.v27n1.262

Issue

Section

Articles