Evaluation of Commercial RO Membrane for BaCl2 Separation

Authors

  • S. V. Huliienko Faculty of Chemical Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Ave., 03056 Kyiv, Ukraine
  • V. V. Yasenchuk Faculty of Chemical Engineering, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Ave., 03056 Kyiv, Ukraine

DOI:

https://doi.org/10.11113/amst.v27n1.261

Keywords:

Barium chloride, reverse osmosis, membrane, concentration, rejection

Abstract

The conventional methods of the BaCl2 solution separation are characterized by high energy consumption, reagent requirement, and other technological limitations. The pressure-driven membrane process can be an alternative, but the number of published investigations in this field is limited. The study of the effectivity of the BaCl2 diluted solution separation using the commercially available reverse osmosis membrane was carried out. It was defined that the spiral wound membrane module HID TFC 1812-75 GPD (nominal permeate flux is 281 l/d) has acceptable characteristics of productivity and selectivity. In particular, the permeate flux through these membranes for the BaCl2 solutions does not differ from the fluxes for other salt solutions in the considered range of the applied pressures (0.2-0.6 MPa). The rejection coefficient values were in the range of 0.9-0.95 and slightly varied with applied pressure. Therefore, such membranes are suitable for wastewater purification from the remains of BaCl2. At the same time, the concentration ratio does not exceed 1.5-2, consequently, the application of such membranes on the concentration stage requires deeper justification based on the economical parameters. The significant influence of the concentration polarization on the separation effectivity was not detected up to applied pressures 0.5 MPa.

References

Gokarn, A. N., Gaikwad, A. D., Phalak, C. A., Bhandari, V. M. 1999. Studies in the reaction–separation method for the preparation of barium chloride from barite using ion exchange. Sep. Sci. Thechnol. 34/9: 1845-1858. https://doi.org/10.1081/SS-100100742.

Navamani Kartic, D., Aditya Narayana, B. C. H., Arivazhagan, M. 2018. Removal of high concentration of sulfate from pigment industry effluent by chemical precipitation using barium chloride: RSM and ANN modeling approach. J. Environ. Manage. 206: 69-75. https://doi.org/10.1016/j.jenvman.2017.10.017.

Tsalidis, G. A., Panteleaki Tourkodimitri K., Mitko K., Gzyl, G., Skalny, A., Posada, J. A., Xevgenos, D. 2022. Assessing the environmental performance of a novel coal mine brine treatment technique: A case in Poland. J. Clean. Prod. 358: 131973. https://doi.org/10.1016/j.jclepro.2022.131973.

Chałupnik, S., Wysoka, M., Chmielewska, I., Samolej, K. 2020. Modern technologies for radium removal from water – Polish mining industry case study. Water Resour. Ind. 23: 100125. https://doi.org/10.1016/j.wri.2020.100125.

Chałupnik, S., Wysoka, M., Chmielewska, I., Samolej, K. 2019. Radium removal from mine waters with the application of barium chloride and zeolite: comparison of efficiency. J. Sustain. Min. 18/4: 174-181. https://doi.org/10.1016/j.jsm.2019.07.002.

Rivera, C., Pilatowsky, I., Ménde, E., Rivera, W. 2007. Experimental study of a thermo-chemical refrigerator using the barium chloride–ammonia reaction. Int. J. Hydrog. Energy. 32/15: 3154-3158. https://doi.org/10.1016/j.ijhydene.2006.01.023.

Veselovskaya, J. V., Critoph R. E., Thorpe, R. N., Metcalf, S., Tokarev, M. M., Aristov Yu, I. 2010. Novel ammonia sorbents ‘‘porous matrix modified by active salt” for adsorptive heat transformation: 3. Testing of ‘‘BaCl2/vermiculite” composite in a lab-scale adsorption chiller. Appl. Therm. Eng. 30/10: 1188-1192. https://doi.org/10.1016/j.applthermaleng.2010.01.035.

Martínez-Tejeda, F., Pilatowsky, I., Best, R., Meza-Cruz, O., Gómez, V. H., Cadenas, E., Romero, R. J. 2018. Experimental barium chloride-ammonia cooling cycle study at low generation temperatures. Appl. Therm. Eng. 141: 751-761. https://doi.org/10.1016/j.applthermaleng.2018.06.020.

Herrero, E. P., Mart´ın Del Valle, E. M., M. A. Galan. 2006. Development of a new technology for the production of microcapsules based in atomization processes. J. Chem. Eng. 117/2: 137-142. https://doi.org/10.1016/j.cej.2005.12.022.

Jia, Z., Hao, S., Liu, Z. 2017. Synthesis of BaSO4 nanoparticles with a membrane reactor: Parameter effects on membrane fouling. J. Membr. Sci. 543: 277-281. https://doi.org/10.1016/j.memsci.2017.08.048.

Segreti, A., Vocci, F., Dewey, W. 1979. Antagonism of barium chloride lethality by atropine and naxalone: analysis by a multivariative logistic model. Toxicol. Appl. Pharmacol. 50/1: 25-30. https://doi.org/10.1016/0041-008X(79)90488-5.

Kopp, S., Perry, H. M., Feliksik, J., Erlanger, M., Perry, E. 1984. Cardiovascular dysfunction and hypersensitivity to sodium pentobarbital induced by chronic barium chloride ingestion. Toxicol. Appl. Pharmacol. 77: 303-314. https://doi.org/10.1016/j.jsm.2019.07.002.

Yu, D., Yi, M., Jin, L. 2015. Incorrigible hypokalemia caused by barium chloride ingestion. Am. J. M. Sc. 349/3: 279-281. https://doi.org/10.1097/MAJ.0000000000000375.

Yeo, S.-D., Choi, J.-H., Lee, T.-J. 2000. Crystal formation of BaCl2 and NH4Cl using a supercritical fluid antisolvent. J Supercrit Fluids. 16/3: 235-246. https://doi.org/10.1016/S0896-8446(99)00037-6.

Kucher, M., Babic, D., Kind, M. 2006. Precipitation of barium sulfate: Experimental investigation about the influence of supersaturation and free lattice ion ratio on particle formation. Chem. Eng. Process. 45/10: 900-907. https://doi.org/10.1016/j.cep.2005.12.006.

Piotrowski, K., Koralewska, J., Matynia A. 2010. Jet-pump crystallizers in reaction-crystallization processes with solid reagent–barium sulphate precipitation study. Chem. Eng. Res. Des. 88/9: 1234-1241. https://doi.org/10.1016/j.cherd.2010.01.029.

Vicum, L., Mazzotti, M. 2007. Multi-scale modeling of a mixing-precipitation process in a semibatch stirred tank. Chem. Eng. Sci. 62/13: 3513-3527. https://doi.org/10.1016/j.ces.2007.02.056.

Pohl, B., Jamshidi, R. Brenner, G., Peuker, U. A. 2012. Experimental study of continuous ultrasonic reactors for mixing and precipitation of nanoparticles. Chem. Eng. Sci. 69/1: 365-372. https://doi.org/10.1016/j.ces.2011.10.058.

Benavides, P. T., Diwekar, U. 2015. Optimal design of adsorbents for NORM removal from produced water in natural gas fracking. Part 1: Group contribution method for adsorption. Chem. Eng. Sci. 137: 964-976. https://doi.org/10.1016/j.ces.2015.07.012.

Patroklou, G., Sassi, K. M., Mujtaba, I. M. 2013. Simulation of boron rejection by seawater reverse osmosis desalination. Chem. Eng. Trans. 32: 1873-1873. https://doi.org/10.3303/CET1332313

Gui, S., Mai, Z., Fu, J., Wei, Y., Wan, J. 2020. Transport models of ammonium nitrogen in wastewater from rare earth smelteries by reverse osmosis membranes. Sustainability. 12/15: 6230. https://doi.org/10.3390/su12156230.

Zhang, Z., Lokare, O. R., Gusa, A. V., Vidic, R. D. 2021. Pretreatment of brackish water reverse osmosis (BWRO) concentrate to enhance water recovery in inland desalination plants by direct contact membrane distillation (DCMD). Desalination. 508: 115050. https://doi.org/10.1016/j.desal.2021.115050.

Lyster, E., Kim, M., Au, J., Cohen, Y. 2010. A method for evaluating antiscalant retardation of crystal nucleation and growth on RO membranes. J. Membr. Sci. 364/1-2: 122-131. https://doi.org/10.1016/j.memsci.2010.08.020.

Hu, Z., Antony, A., Leslie, G., Le-Clech, P. 2014. Real-time monitoring of scale formation in reverse osmosis using electrical impedance spectroscopy. J. Membr. Sci. 453: 320-237. https://doi.org/10.1016/j.memsci.2013.11.014.

Melián-Martel, N., Sadhwani, J. J., Ovidio Pérez Báez, S. 2011. Saline waste disposal reuse for desalination plants for the chlor-alkali industry. The particular case of pozo izquierdo SWRO desalination plant. Desalination. 281: 35-41. https://doi.org/10.1016/j.desal.2011.07.040.

Thibault, Y., McEvoy, J. G., Mortazavi, S., Smith, D., Doiron, A. 2017. Characterization of fouling processes in ceramic membranes used for the recovery and recycle of oil sands produced water. J. Membr. Sci. 540: 307-320. https://doi.org/10.1016/j.memsci.2017.06.065.

Zhou C., Ye D., Jia H., Yu S. Liu M., Gao C. 2014. Surface mineralization of commercial thin-film composite polyamide membrane by depositing barium sulfate for improved reverse osmosis performance and antifouling property. Desalination. 351: 228-235. https://doi.org/10.1016/j.desal.2014.07.040.

Cheng, W., Liu, C., Tong, T., Epsztein, R., Sun, M., Verduzco, R., Ma, J., Elimelech, M. 2018. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength. J. Membr. Sci. 559: 98-105. https://doi.org/10.1016/j.memsci.2018.04.052.

Wadekar, S. S., Vidic, R. D. 2018. Insights into the rejection of barium and strontium by nanofiltration membrane from experimental and modeling analysis. J. Membr. Sci. 564: 742-752. https://doi.org/10.1016/j.memsci.2018.07.060.

Xu, R., Wang, J., Chen, D., Liu, T., Zheng, Z., Yang, F., Chen, J., Kang, J., Cao, Y, Xiang, M. 2020. Preparation and performance of a charge-mosaic nanofiltration membrane with novel salt concentration sensitivity for the separation of salts and dyes. J. Membr. Sci. 595: 111472. https://doi.org/10.1016/j.memsci.2019.117472.

Sata, T., Kawamura, K., Higa, M., Matsusaki, K. 2001. Electrodialytic transport properties of cation exchange membranes in the presence of cyclodextrins. J. Membr. Sci. 183/2: 201-212. https://doi.org/10.1016/S0376-7388(00)00593-7.

Hosseini, S. M., Nemati, M., Jeddi, F., Salehi, E., Khodabakhshi, A. R., Madaeni, S. S. 2015. Fabrication of mixed matrix heterogeneous cation exchange membrane modified by titanium dioxide nanoparticles: Mono/bivalent ionic transport property in desalination. Desalination. 359: 167-175. https://doi.org/10.1016/j.desal.2014.12.043.

Hiratani, K., Taguchi, K., Sugihara, H. 1991. Synthesis and properties of noncyclic polyether compounds. XVIII. A noncyclic polyether carrier exhibiting magnesium ion-selective transport. J. Membr. Sci. 56/2: 153-165. https://doi.org/10.1016/S0376-7388(00)80805-4.

TFC-1812-75-HID ro membrane|reverse osmosis membrane|ro membrane manufacturer. http://en.ro-hid.com/en_jiayongmo/29.html. (accessed 19 November 2022).

Huliienko, S., Leshchenko, O. 2019. Influence of operating pressure on concentration polarization layer resistance in revers osmosis. Ukr. Food J. 8/1: 119-132. https://doi.org/10.24263/2304-974X-2019-8-1-13.

Huliienko, S. V., Protsiuk, O. O., Gatilov, K. O., Kaminskyi, V. S. 2019. The Estimation of feed solution composition influence on concentration polarization layer resistance during reverse osmosis. J. Eng. Sci. 6/2: f24-f29. https://doi.org/10.21272/jes.2019.6(2).f4.

Huliienko, S., Korniienko, Y. M., Gatilov, K. O. 2020. Modern trends in the mathematical simulation of pressure-driven membrane processes. J. Eng. Sci. 7/1: f1-f21. https://doi.org/10.21272/jes.2020.7(1).f1.

Huliienko, S. V., Korniyenko, Y. M., Muzyka, S. M., Holubka, K. 2022. Simulation of reverse osmosis process: novel approaches and development trends. J. Eng. Sci. 9/2: f6-f36. https://doi.org/110.21272/jes.2022.9(2).f2,

Li, C., Ma, Y., Li, H., Peng. G. 2019. Exploring the nanofiltration mass transfer characteristic and concentrate process of procyanidins from grape juice. Food Sci Nutr. 7/5:1884-1890. https://doi.org/10.1002/fsn3.1045

Shirazi, S., Lin, C.-J., Chen, D. 2010. Inorganic fouling of pressure-driven membrane processes — A critical review. Desalination. 250: 236-248. https://doi.org/10.1016/j.desal.2009.02.056.

Liley, P. E., Thomson, G. H., Friend, D.G., Daubert, T. E., Buck, E. 1997. Physical and Chemical Data in Perry’s chemical engineers’ handbook. — 7th ed. Edited by Green D. W. New York: McGraw-Hill. 2-1-2-374.

Chong, T. H., Loo, S.-L., Krantz, W. B. 2015. Energy-efficient reverse osmosis desalination process. J. Membr.

Sci. 473: 177-188. https://doi.org/10.1016/j.memsci.2014.09.005.

Downloads

Published

2023-03-20

How to Cite

Huliienko, S. V., & Yasenchuk , V. V. (2023). Evaluation of Commercial RO Membrane for BaCl2 Separation. Journal of Applied Membrane Science & Technology, 27(1), 35–45. https://doi.org/10.11113/amst.v27n1.261

Issue

Section

Articles