Effect of Configurations and Operating Parameters on the Desalination Performance of Membrane Distillation: A Review

Authors

  • K. C. Chong ᵃLee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia ᵇCentre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
  • S. Y. Kuek Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
  • S. O. Lai ᵃLee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia ᵇCentre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
  • H. S. Thiam ᵃLee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia ᵇCentre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
  • W. C. Chong ᵃLee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia ᵇCentre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
  • S. H. Shuit ᵃLee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia ᵇCentre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
  • S. S. Lee ᵃLee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia ᵇCentre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia

DOI:

https://doi.org/10.11113/amst.v26n2.246

Keywords:

Membrane Distillation, Sodium Chloride, Permeate Flux, Configuration, Operating Parameter

Abstract

A desalination is a promising approach to addressing the freshwater scarcity caused by limited freshwater resources and salt intrusion (pollution). Membrane distillation (MD) was proposed as a possible technology for desalination. This study review the efficiency of membrane distillation by comparing the permeate flux and thermal energy efficiency of the four configurations, namely, direct contact membrane distillation (DCMD), vacuum membrane distillation (VMD), air gap membrane distillation (AGMD) and sweeping gas membrane distillation (SGMD). It was observed that the sequence of permeate flux and thermal energy efficiency is VMD> DCMD> SGMD>AGMD and VMD> SGMD> AGMD> DCMD, respectively. The results show that the VMD provides the highest permeate flux at 15.2 kg/hm2 with 99.25% of salt rejection rate. Additionally, VMD possess good energy efficiency at 66% relative to other configuration at the recorded permeate flux. Subsequently, the feasibility of MD in desalination is studied using different case studies. Furthermore, the effect of operating parameters (feed temperature, feed concentration, feed flow rate, and long-term operation) on flux is discussed. The results suggested that the flux increases when feed temperature or feed flow is increased. At the same time, the flux will decrease when feed is in high concentration and long-term operation.

References

A. Yadav, P. K. Labhasetwar, V. K. Shahi. 2021. Membrane Distillation using Low-grade Energy for Desalination: A Review. J. Environ. Chem. Eng. 9: 105818

V. T. Shahu, S. B. Thombre, 2019. Air Gap Membrane Distillation: A Review. J. Renew. Sustain. Energy. 11: 045901.

T. Oki, S. Kanae. 2006. Global Hydrological Cycles and World Water Resources. Sci. 313: 1068-1072.

A. Ahmad, A. Hashlamon, L. Hong. 2015. Pre-treatment Methods for Seawater Desalination and Industrial Wastewater Treatment: A Brief Review. Int. K. Sci. Res. 1: 422-428.

M. Khayet, T. Matsuura. 2011. Membrane Distillation Principles and Applications. Netherlands: Elsevier.

A. Kullab, A. Martin. 2011. Membrane Distillation and Applications for Water Purification in Thermal Cogeneration Plants. Sep. Purif. Technol. 76(3): 231-237.

P. Biniaz, N. T. Ardekani, M. A. Makarem, M. R. Rahimpour. 2019. Water and Wastewater Treatment Systems by Novel Integrated Membrane Distillation (MD). Chem Engineering. 3: 1-36.

A. Criscuoli. 2021. Membrane Distillation Process. Membranes. 11: 144

A. A. Kiss, O. M. Kattan. 2018. An Industrial Perspective on Membrane Distillation Processes. J. Chem. Technol. Biotechnol. 93: 2047-2055.

L. Eykens, T. Reyns, K. de Sitter, C. Dotremont, L. Pinoy, B. van der Bruggen. 2016. How to Select a Membrane Distillation Configuration? Process Conditions and Membrane Influence Unraveled. Desalination. 399: 105-115.

B. B. Ashoor, S. Mansour, A. Giwa, V. Dufour, S. W. Hasan. 2016. Principles and Applications of Direct Contact Membrane Distillation (DCMD): A Comprehensive Review. Desalination. 398: 222-246.

A. F. S. Foureaux, V. R. Moreira, Y. A. R. Lebron, L. V. S. Santos, M. C. S. Amaral. 2020. Direct Contact Membrane Distillation as an Alternative to the Conventional Methods For Value-added Compounds Recovery from Acidic Effluents: A Review. Sep. Purif. Technol. 236: 116251.

Z. Zhang, A. A. Atia, J. A. Andrés-Mañas, G. Zaragoza, V. Fthenakis. 2020. Comparative Techno-economic Assessment of Osmotically-assisted Reverse Osmosis And Batch-Operated Vacuum-air-gap Membrane Distillation for High-salinity Water Desalination. Desalination. 532: 115737.

Yang, S., Jasim, S. A., Dmitry Bokov, D., Chupradit, S., Nakhjiri, A. T., El-Shafay, A. S. 2022. Membrane Distillation Technology for Molecular Separation: A Review on the Fouling, Wetting and Transport Phenomena. Journal of Molecular Liquids. 349: 118115.

M. Khayet, 2011. Membranes and Theoretical Modeling of Membrane Distillation: A Review. Adv. Colloid Interface Sci. 164: 56-88.

N. N. Safi, S. S. Ibrahim, N. Zouli, H. S. Majdi, Q. F. Alsalhy, E. Drioli, A. Figoli, 2020. A Systematic Framework for Optimizing a Sweeping Gas Membrane Distillation (SGMD). Membranes. 10: 18.

C. Huayan, W. Chunrui, J. Yue, JW. Xuan, L. Xiaolong. 2011. Comparison of Three Membrane Distillation Configurations and Seawater Desalination by Vacuum Membrane Distillation. Desalin. Water Treat. 28: 321-327.

I. A. Said, T. Chomiak, J. Floyd, Q. Li. 2020. Sweeping Gas Membrane Distillation (SGMD) for Wastewater Treatment, Concentration, and Desalination: A Comprehensive Review. Chem. Eng. Process. 152: 107960.

G. Li, L. Lu, L. Zhang. 2020. System-scale Modeling and Membrane Structure Parameter Optimization for Solar-powered Sweeping Gas Membrane Distillation Desalination System. J. Clean. Prod. 253: 119968.

S. Honarparvar, X. Zhang, T. Chen, C. Na, D. Reible. 2019. Modeling Technologies for Desalination of Brackish Water — Toward a Sustainable Water Supply. Curr. Opin. Chem. Eng. 26: 104-111.

https://doi.org/10.1016/j.coche.2019.09.005

V. Karanikola, S. E. Moore, A. Deshmukh, R. G. Arnold, M. Elimelech, A. E. Sáez. 2019. Economic Performance of Membrane Distillation Configurations in Optimal Solar Thermal Desalination Systems. Desalination. 472: 114164.

H. C. Duong, N. D. Phan, T. Nguyen, T. M. Pham, N. C. Nguyen. 2017b. Membrane Distillation for Seawater Desalination Applications in Vietnam: Potential and Challenges. Vietnam J Sci Technol. 55: 659.

L. M. Camacho, L. Dumée, J. Zhang, J. Li, M. Duke, J. Gomez, S. Gray. 2013. Advances in Membrane Distillation for Water Desalination and Purification Applications. Water. 5: 94-196.

L. Gao, J. Zhang, S. Gray, J. Li, 2017. Experimental Study of Hollow Fiber Permeate Gap Membrane Distillation and Its Performance Comparison with DCMD and SGMD. Sep. Purif. Technol. 188: 11-23.

L. Gao. 2019. Theoretical and Experimental Investigations of Permeate Gap Membrane Distillation. Melbourne: Victoria University.

M. A. M Alhefnawi, M. Abdu-Allah Al-Qahtany. 2017. Thermal Insulation Efficiency of Unventilated Air-gapped Facades in Hot Climate. Arab. J. Sci. Eng. 42: 1155-1160.

F. E. Ahmed, B. S. Lalia, R. Hashaikeh, N. Hilal. 2022. Intermittent Direct Joule Heating of Membrane Surface for Seawater Desalination by Air Gap Membrane Distillation. J. Membr. Sci. 648: 120390.

J. Koo, J. Han, J. Sohn, S. Lee, T. M. Hwang. 2013. Experimental Comparison of Direct Contact Membrane Distillation (DCMD) with Vacuum Membrane Distillation (VMD). Desalin Water Treat. 51: 6299-6309.

M. J. Assael, A. E. Kalyva, S. A. Monogenidou, M. L. Huber, R. A. Perkins, D. G. Friend, E. F. May. 2018. Reference Values and Reference Correlations for the Thermal Conductivity and Viscosity of Fluids. J. Phys. Chem. Ref. Data. 47: 2.

M. M. A. Shirazi, M. Mahdi, A. Shirazi, A. Kargari. 2015. A Review on Applications of Membrane Distillation (MD) Process for Wastewater Treatment. J. Membr. Sci. Res. 1: 101-112.

G. Latini, G. 2017. Thermophysical Properties of Fluids: Dynamic Viscosity and Thermal Conductivity. J. Phys. Conf. Ser. 923: 012001.

R. Ullah, M. Khraisheh, R. J. Esteves, J. T. McLeskey, M. AlGhouti, M. Gad-el-Hak, H. V. Tafreshi. 2018. Energy Efficiency of Direct Contact Membrane Distillation, Desalination. 433: 56-67.

F. A. Banat, J. Simandl. 1998. Desalination by Membrane Distillation: A Parametric Study. Sep. Sci. Technol. 33: 201-226.

N. Tang, P. Cheng, X. Wang, H. Zhang, 2009, Study on the Vacuum Membrane Distillation Performances of PVDF Hollow Fiber Membranes for Aqueous NaCl Solution. Chem. Eng. Trans. 17: 1537-1542.

F. E. Ahmed, B. S. Lalia, R. Hashaikeh, R., Hilal, N. 2020. Alternative Heating Techniques in Membrane Distillation: A Review. Desalination. 496: 114713.

V. A. Ravisankar. 2018. Improving Sweeping Gas Membrane Distillation Applicability and Specific Thermal Energy Consumption. Western Australia: Murdoch University.

A. Ali, F. Macedonio, E. Drioli, S. Aljlil, O. A. Alharbi. 2013. Experimental and Theoretical Evaluation of Temperature Polarization Phenomenon in Direct Contact Membrane Distillation. Chem. Eng. Res. Des. 91: 1966-1977.

K. W. Lawson, D. R. Lloyd. 1997. Membrane Distillation. J. Membr. Sci. 124: 1-25.

A. M. Alklaibi, N. Lior, N., 2005. Membrane-distillation Desalination: Status and Potential. Desalination. 171: 111-131.

N. N. Safi, S. S. Ibrahim, N. Zouli, H. S. Majdi, Q. F. Alsalhy, E. Drioli, A. Figoli. 2020. A Systematic Framework for Optimizing A Sweeping Gas Membrane Distillation (SGMD). Membranes. 10: 1-18.

B. Jiao, A. Cassano, E. Drioli. 2004. Recent Advances on Membrane Processes for the Concentration of Fruit Juices: A Review. J. Food Eng. 63: 303-324.

V. T. Shahu, S. B. Thombre. 2019. Air Gap Membrane Distillation: A Review. J. Renew. Sustain. Energy. 11: 045901.

Y. H. Chen, H. G. Hung, C. D. Ho, H. Chang. 2020. Economic Design of Solar-Driven Membrane Distillation Systems for Desalination. Membranes. 11: 15. https://doi.org/10.3390/membranes11010015.

A. L. McGaughey, R. D. Gustafson, A. E. Childress. 2017. Effect of Long-term Operation on Membrane Surface Characteristics and Performance In Membrane Distillation. J. Membr. Sci. 543: 143-150.

A. C. M. Franken, J. A. M. Nolten, M. H. V. Mulder and C.A. Smolders. 1987. Ethanol-Water Separation by Membrane Distillation: Effect of Temperature Polarization. New York: Walter de Gruyter.

L. Chen, P. Xu, H. Wang. 2020. Interplay of the Factors Affecting Water Flux and Salt Rejection in Membrane Distillation: A State-Of-The-Art Critical Review. Water. 12: 10

G. A. Riley. 1970. Particulate Organic Matter in Sea Water. Adv. Mar. Biol. 8: 1-118.

Downloads

Published

2022-07-25

How to Cite

Chong, K. C., Kuek, S. Y., Lai, S. O., Thiam, H. S., Chong, W. C., Shuit, S. H., & Lee, S. S. (2022). Effect of Configurations and Operating Parameters on the Desalination Performance of Membrane Distillation: A Review . Journal of Applied Membrane Science & Technology, 26(2), 49–60. https://doi.org/10.11113/amst.v26n2.246

Issue

Section

Articles