Photocatalytic Antimicrobial Coating as Self-Disinfecting Surface for Defeating Various Contagious Diseases: A Review

Authors

  • N. K. M. Salleh Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • F. Aziz Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
  • S. S. Mohtar Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia

DOI:

https://doi.org/10.11113/amst.v26n2.241

Keywords:

Antimicrobial, Coating, Photocatalyst, Visible-light, Cuprous oxide

Abstract

Surface contamination with pathogenic microorganisms such as E. coli and S. aureus may lead to the spread of numerous diseases such as pneumonia and sepsis. The most common sources of surface contamination are human contamination and the environment, which includes air, dust, and water. Conventional cleaning and disinfection practices are not sufficient to ensure the safety and not environmentally friendly to use. It has been proposed that a visible light active photocatalytic antimicrobial coating on the indoor surface can successfully control this increasing threat. Photocatalysis is recognized as one of the promising approaches and metal oxides as photocatalyst have showed significant potential antibacterial agents against a variety of bacteria. Cuprous oxide (Cu2O) has been recognized as potential visible light active photocatalyst for antimicrobial applications due to its large bandgap. The current review highlights the antimicrobial properties of various Cu2O-based photocatalyst and their potential use as coatings.  This review article will introduce the related parameters in Cu2O-based photocatalyst applications as antimicrobial coatings in order to provide better understanding on achieving excellent performance in photocatalytic disinfection. This review may be beneficial in guiding photocatalyst research for antimicrobial applications in the visible light region.

References

Y. Chen, X. Tang, X. Gao, B. Zhang, Y. Luo, and X. Yao. 2019. Antimicrobial property and photocatalytic antibacterial mechanism of the TiO2-doped SiO2 hybrid materials under ultraviolet-light irradiation and visible-light irradiation. Ceram. Int. 45(12): 15505-15513. Doi: 10.1016/j.ceramint.2019.05.054.

V. K. Yemmireddy and Y. C. Hung. 2017. Using Photocatalyst Metal Oxides as Antimicrobial Surface Coatings to Ensure Food Safety—Opportunities and Challenges. Compr. Rev. Food Sci. Food Saf. 16(4): 617-631. Doi: 10.1111/1541-4337.12267.

C. P. Dunne et al. 2017. Anti-microbial Coating Innovations to Prevent Infectious Diseases (AMiCI): Cost Action ca15114. Bioengineered. 8(6): 679-685. Doi:10.1080/21655979.2017.1323593.

J. J. Ramsden. 2015. Photocatalytic Antimicrobial Coatings. Nanotechnol. Perceptions. 11(3): 146-168. Doi:10.4024/n12ra15a.ntp.15.03.

S. Chaturvedi and P. N. Dave. 2013. Environmental Application of Photocatalysis. Mater. Sci. Forum. 734(December 2012): 273-294.

Doi:10.4028/www.scientific.net/MSF.734.273.

V. Kumaravel et al. 2021 Antimicrobial TiO2 Nanocomposite Coatings for Surfaces, Dental and Orthopaedic Implants. Chem. Eng. J. 416(December 2020): 129071.

Doi: 10.1016/j.cej.2021.129071.

D. Durgalakshmi, R. Ajay Rakkesh, S. Rajendran, and M. Naushad. 2020. Principles and Mechanisms of Green Photocatalysis. January: 1-24. Doi: 10.1007/978-3-030-15608-4_1.

B. A. Koiki and O. A. Arotiba. 2020. Cu2O as an Emerging Semiconductor in Photocatalytic and Photoelectrocatalytic Treatment of Water Contaminated with Organic Substances: A Review. RSC Adv. 10(60): 36514-36525.

Doi: 10.1039/d0ra06858f.

N. D. Khiavi, R. Katal, S. K. Eshkalak, S. Masudy-Panah, S. Ramakrishna, and H. Jiangyong. 2019. Visible Light Driven Heterojunction Photocatalyst of CuO-Cu2O Thin Films for Photocatalytic Degradation of Organic Pollutants. Nanomaterials. 9(7).

Doi: 10.3390/nano9071011.

X. Su, W. Chen, Y. Han, D. Wang, and J. Yao. 2021. In-situ Synthesis of Cu2O on Cotton Fibers with Antibacterial Properties and Reusable Photocatalytic Degradation of Dyes. Appl. Surf. Sci. 56(June 2020).

Doi:10.1016/j.apsusc.2020.147945.

S. Luo et al. 2022. Mechanism Investigation for Ultra-efficient Photocatalytic Water Disinfection based on Rational Design of Indirect Z-scheme Heterojunction Black Phosphorus QDs/Cu2O Nanoparticles. J. Hazard. Mater. 424(PA): 127281.

Doi:10.1016/j.jhazmat.2021.127281.

A. M. Nasir et al. 2020. A Review on Floating Nanocomposite Photocatalyst: Fabrication and Applications for Wastewater Treatment. J. Water Process Eng. 36(January). Doi: 10.1016/j.jwpe.2020.101300.

H. Park, E. T. Bentria, S. Rtimi, A. Arredouani, H. Bensmail, and F. El-Mellouhi. 2021 Accelerating the Design of Photocatalytic Surfaces for Antimicrobial Application: Machine Learning based on a Sparse Dataset. Catalysts. 11(8). Doi: 10.3390/catal11081001.

M. E. El-Naggar, T. A. Khattab, M. S. Abdelrahman, A. Aldalbahi, and M. R. Hatshan. 2021. Development of Antimicrobial, UV Blocked and Photocatalytic Self-cleanable Cotton Fibers Decorated with Silver Nanoparticles using Silver Carbamate and Plasma Activation. Cellulose. 28(2): 1105-1121.

Doi: 10.1007/s10570-020-03537-4.

M. M. Ibrahim et al. 2019. Direct Z-scheme of Cu2O/TiO2 Enhanced Self-cleaning, Antibacterial Activity, and UV Protection of Cotton Fiber Under Sunlight. Appl. Surf. Sci. 479(February): 953-962.

Doi:10.1016/j.apsusc.2019.02.169.

L. Valenzuela, A. Iglesias, M. Faraldos, A. Bahamonde, and R. Rosal. 2019. Antimicrobial Surfaces with Self-cleaning Properties Functionalized by Photocatalytic ZnO Electrosprayed Coatings. J. Hazard. Mater. 369(December 2018): 665-673.

Doi:10.1016/j.jhazmat.2019.02.073.

K. Kaviyarasu et al. 2017. Photocatalytic Performance and Antimicrobial Activities of HAp-TiO2 Nanocomposite Thin Films by Sol-gel Method. Surfaces and Interfaces. 6: 247-255.

Doi:10.1016/j.surfin.2016.10.002

M. Ratova, J. Redfern, J. Verran, and P. J. Kelly. 2018. Highly Efficient Photocatalytic Bismuth Oxide Coatings and Their Antimicrobial Properties Under Visible Light Irradiation. Appl. Catal. B Environ. 239(July): 223-232.

Doi:10.1016/j.apcatb.2018.08.020.

Z. Du et al. 2018. Enhanced Photocatalytic Activity of Bi2WO6/TiO2 Composite Coated Polyester Fabric Under Visible Light Irradiation. Appl. Surf. Sci. 435: 626-634.

Doi:10.1016/j.apsusc.2017.11.136.

M. Muscetta, R. Andreozzi, L. Clarizia, I. Di Somma, and R. Marotta. 2020. Hydrogen Production through Photoreforming Processes Over Cu2O/TiO2 Composite Materials: A Mini-Review. Int. J. Hydrogen Energy. 45(53): 28531-28552. Doi:10.1016/j.ijhydene.2020.07.225.

A. M. Mohammed, S. S. Mohtar, F. Aziz, S. A. Mhamad, and M. Aziz. 2021. Review of Various Strategies to Boost the Photocatalytic Activity of the Cuprous Oxide-based Photocatalyst. J. Environ. Chem. Eng. 9(2):

Doi: 10.1016/j.jece.2021.105138.

Z. Yang, C. Ma, W. Wang, M. Zhang, X. Hao, and S. Chen. 2019. Fabrication of Cu2O-Ag Nanocomposites with Enhanced Durability and Bactericidal Activity. J. Colloid Interface Sci. 557: 156-167.

Doi: 10.1016/j.jcis.2019.09.015.

P. Ganguly, C. Byrne, A. Breen, and S. C. Pillai. 2018. Antimicrobial Activity of Photocatalysts: Fundamentals, Mechanisms, Kinetics And Recent Advances. Appl. Catal. B Environ. 225(October 2017): 51-75.

Doi:10.1016/j.apcatb.2017.11.018.

I. Dincer and C. Zamfirescu. 2016. Hydrogen Production by Photonic Energy. Sustainable Hydrogen Production, I. Dincer and C. Zamfirescu, Eds. Elsevier. 309-391.

L. Wang, C. Hu, and L. Shao. 2017. The Antimicrobial Activity of Nanoparticles: Present Situation and Prospects for the Future. Int. J. Nanomedicine. 12: 1227-1249.

Doi: 10.2147/IJN.S121956.

Karen Steward. 2019. Gram Positive vs Gram Negative. Technol. Networks. 1-4.

S. Adhikari, A. Banerjee, N. K. R. Eswar, D. Sarkar, and G. Madras. 2015. Photocatalytic Inactivation of E. Coli by ZnO-Ag Nanoparticles Under Solar Radiation. RSC Adv. 5(63): 51067-51077.

Doi: 10.1039/c5ra06406f.

D. Meng, X. Liu, Y. Xie, Y. Du, Y. Yang, and C. Xiao. 2019. Antibacterial Activity of Visible Light-activated TiO2 Thin Films with Low Level of Fe Doping. Adv. Mater. Sci. Eng.

Doi: 10.1155/2019/5819805.

D. Zhang, S. Lv, and Z. Luo. 2020. A Study on the Photocatalytic Degradation Performance of a [KNbO3]0.9-[BaNi0.5Nb0.5O3-: δ]0.1 Perovskite. RSC Adv. 10(3): 1275-1280.

Doi: 10.1039/c9ra07310h.

J. Hot, J. Topalov, E. Ringot, and A. Bertron. 2017. Investigation on Parameters Affecting the Effectiveness of Photocatalytic Functional Coatings to Degrade NO: TiO2 Amount on Surface, Illumination, and Substrate Roughness. Int. J. Photoenergy, Doi: 10.1155/2017/6241615.

I. Dundar, A. Mere, V. Mikli, M. Krunks, and I. O. Acik. 2020. Thickness Effect on Photocatalytic Activity of Tio2 Thin Films Fabricated by Ultrasonic Spray Pyrolysis. Catalysts. 10(9): 1-13.

Doi: 10.3390/catal10091058.

K. Malnieks, G. Mezinskis, and I. Pavlovska. 2017. Effect of Different Dip-coating Techniques on TiO2 Thin Film Properties. Key Eng. Mater. 721 (April 2017): 128-132.

Doi:10.4028/www.scientific.net/KEM.721.128.

B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei. 2019. On Coating Techniques for Surface Protection: A Review. J. Manuf. Mater. Process. 3(1).

Doi: 10.3390/jmmp3010028.

J. W. Shi et al. 2012. TiO2/activated Carbon Fibers Photocatalyst: Effects of Coating Procedures on the Microstructure, Adhesion Property, and Photocatalytic Ability. J. Colloid Interface Sci. 388(1): 201-208.

Doi: 10.1016/j.jcis.2012.08.038.

Downloads

Published

2022-07-25

How to Cite

Salleh, N. K. M., Aziz, F., & Mohtar, S. S. (2022). Photocatalytic Antimicrobial Coating as Self-Disinfecting Surface for Defeating Various Contagious Diseases: A Review. Journal of Applied Membrane Science & Technology, 26(2), 61–75. https://doi.org/10.11113/amst.v26n2.241

Issue

Section

Articles